Spaces:
Runtime error
Runtime error
import os | |
import os.path as osp | |
import re | |
import sys | |
import yaml | |
import shutil | |
import numpy as np | |
import torch | |
import click | |
import warnings | |
warnings.simplefilter('ignore') | |
# load packages | |
import random | |
import yaml | |
from munch import Munch | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
from models import * | |
from meldataset import build_dataloader | |
from utils import * | |
from losses import * | |
from optimizers import build_optimizer | |
import time | |
from accelerate import Accelerator | |
from accelerate.utils import LoggerType | |
from accelerate import DistributedDataParallelKwargs | |
from torch.utils.tensorboard import SummaryWriter | |
import logging | |
from accelerate.logging import get_logger | |
logger = get_logger(__name__, log_level="DEBUG") | |
def main(config_path): | |
config = yaml.safe_load(open(config_path)) | |
log_dir = config['log_dir'] | |
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True) | |
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) | |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
accelerator = Accelerator(project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs]) | |
if accelerator.is_main_process: | |
writer = SummaryWriter(log_dir + "/tensorboard") | |
# write logs | |
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log')) | |
file_handler.setLevel(logging.DEBUG) | |
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s')) | |
logger.logger.addHandler(file_handler) | |
batch_size = config.get('batch_size', 10) | |
device = accelerator.device | |
epochs = config.get('epochs_1st', 200) | |
save_freq = config.get('save_freq', 2) | |
log_interval = config.get('log_interval', 10) | |
saving_epoch = config.get('save_freq', 2) | |
data_params = config.get('data_params', None) | |
sr = config['preprocess_params'].get('sr', 24000) | |
train_path = data_params['train_data'] | |
val_path = data_params['val_data'] | |
root_path = data_params['root_path'] | |
min_length = data_params['min_length'] | |
OOD_data = data_params['OOD_data'] | |
max_len = config.get('max_len', 200) | |
# load data | |
train_list, val_list = get_data_path_list(train_path, val_path) | |
train_dataloader = build_dataloader(train_list, | |
root_path, | |
OOD_data=OOD_data, | |
min_length=min_length, | |
batch_size=batch_size, | |
num_workers=2, | |
dataset_config={}, | |
device=device) | |
val_dataloader = build_dataloader(val_list, | |
root_path, | |
OOD_data=OOD_data, | |
min_length=min_length, | |
batch_size=batch_size, | |
validation=True, | |
num_workers=0, | |
device=device, | |
dataset_config={}) | |
with accelerator.main_process_first(): | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
from Utils.PLBERT.util import load_plbert | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
scheduler_params = { | |
"max_lr": float(config['optimizer_params'].get('lr', 1e-4)), | |
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)), | |
"epochs": epochs, | |
"steps_per_epoch": len(train_dataloader), | |
} | |
model_params = recursive_munch(config['model_params']) | |
multispeaker = model_params.multispeaker | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
best_loss = float('inf') # best test loss | |
loss_train_record = list([]) | |
loss_test_record = list([]) | |
loss_params = Munch(config['loss_params']) | |
TMA_epoch = loss_params.TMA_epoch | |
for k in model: | |
model[k] = accelerator.prepare(model[k]) | |
train_dataloader, val_dataloader = accelerator.prepare( | |
train_dataloader, val_dataloader | |
) | |
_ = [model[key].to(device) for key in model] | |
# initialize optimizers after preparing models for compatibility with FSDP | |
optimizer = build_optimizer({key: model[key].parameters() for key in model}, | |
scheduler_params_dict= {key: scheduler_params.copy() for key in model}, | |
lr=float(config['optimizer_params'].get('lr', 1e-4))) | |
for k, v in optimizer.optimizers.items(): | |
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k]) | |
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k]) | |
with accelerator.main_process_first(): | |
if config.get('pretrained_model', '') != '': | |
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'], | |
load_only_params=config.get('load_only_params', True)) | |
else: | |
start_epoch = 0 | |
iters = 0 | |
# in case not distributed | |
try: | |
n_down = model.text_aligner.module.n_down | |
except: | |
n_down = model.text_aligner.n_down | |
# wrapped losses for compatibility with mixed precision | |
stft_loss = MultiResolutionSTFTLoss().to(device) | |
gl = GeneratorLoss(model.mpd, model.msd).to(device) | |
dl = DiscriminatorLoss(model.mpd, model.msd).to(device) | |
wl = WavLMLoss(model_params.slm.model, | |
model.wd, | |
sr, | |
model_params.slm.sr).to(device) | |
for epoch in range(start_epoch, epochs): | |
running_loss = 0 | |
start_time = time.time() | |
_ = [model[key].train() for key in model] | |
for i, batch in enumerate(train_dataloader): | |
waves = batch[0] | |
batch = [b.to(device) for b in batch[1:]] | |
texts, input_lengths, _, _, mels, mel_input_length, _ = batch | |
with torch.no_grad(): | |
mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda') | |
text_mask = length_to_mask(input_lengths).to(texts.device) | |
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
s2s_attn = s2s_attn[..., 1:] | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
with torch.no_grad(): | |
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2) | |
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float() | |
attn_mask = (attn_mask < 1) | |
s2s_attn.masked_fill_(attn_mask, 0.0) | |
with torch.no_grad(): | |
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down)) | |
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) | |
# encode | |
t_en = model.text_encoder(texts, input_lengths, text_mask) | |
# 50% of chance of using monotonic version | |
if bool(random.getrandbits(1)): | |
asr = (t_en @ s2s_attn) | |
else: | |
asr = (t_en @ s2s_attn_mono) | |
# get clips | |
mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load | |
mel_len = min([int(mel_input_length_all.min().item() / 2 - 1), max_len // 2]) | |
mel_len_st = int(mel_input_length.min().item() / 2 - 1) | |
en = [] | |
gt = [] | |
wav = [] | |
st = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item() / 2) | |
random_start = np.random.randint(0, mel_length - mel_len) | |
en.append(asr[bib, :, random_start:random_start+mel_len]) | |
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) | |
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] | |
wav.append(torch.from_numpy(y).to(device)) | |
# style reference (better to be different from the GT) | |
random_start = np.random.randint(0, mel_length - mel_len_st) | |
st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)]) | |
en = torch.stack(en) | |
gt = torch.stack(gt).detach() | |
st = torch.stack(st).detach() | |
wav = torch.stack(wav).float().detach() | |
# clip too short to be used by the style encoder | |
if gt.shape[-1] < 80: | |
continue | |
with torch.no_grad(): | |
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach() | |
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) | |
s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1)) | |
y_rec = model.decoder(en, F0_real, real_norm, s) | |
# discriminator loss | |
if epoch >= TMA_epoch: | |
optimizer.zero_grad() | |
d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean() | |
accelerator.backward(d_loss) | |
optimizer.step('msd') | |
optimizer.step('mpd') | |
else: | |
d_loss = 0 | |
# generator loss | |
optimizer.zero_grad() | |
loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) | |
if epoch >= TMA_epoch: # start TMA training | |
loss_s2s = 0 | |
for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths): | |
loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length]) | |
loss_s2s /= texts.size(0) | |
loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10 | |
loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean() | |
loss_slm = wl(wav.detach(), y_rec).mean() | |
g_loss = loss_params.lambda_mel * loss_mel + \ | |
loss_params.lambda_mono * loss_mono + \ | |
loss_params.lambda_s2s * loss_s2s + \ | |
loss_params.lambda_gen * loss_gen_all + \ | |
loss_params.lambda_slm * loss_slm | |
else: | |
loss_s2s = 0 | |
loss_mono = 0 | |
loss_gen_all = 0 | |
loss_slm = 0 | |
g_loss = loss_mel | |
running_loss += accelerator.gather(loss_mel).mean().item() | |
accelerator.backward(g_loss) | |
optimizer.step('text_encoder') | |
optimizer.step('style_encoder') | |
optimizer.step('decoder') | |
if epoch >= TMA_epoch: | |
optimizer.step('text_aligner') | |
optimizer.step('pitch_extractor') | |
iters = iters + 1 | |
if (i+1)%log_interval == 0 and accelerator.is_main_process: | |
log_print ('Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f' | |
%(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, loss_gen_all, d_loss, loss_mono, loss_s2s, loss_slm), logger) | |
writer.add_scalar('train/mel_loss', running_loss / log_interval, iters) | |
writer.add_scalar('train/gen_loss', loss_gen_all, iters) | |
writer.add_scalar('train/d_loss', d_loss, iters) | |
writer.add_scalar('train/mono_loss', loss_mono, iters) | |
writer.add_scalar('train/s2s_loss', loss_s2s, iters) | |
writer.add_scalar('train/slm_loss', loss_slm, iters) | |
running_loss = 0 | |
print('Time elasped:', time.time()-start_time) | |
loss_test = 0 | |
_ = [model[key].eval() for key in model] | |
with torch.no_grad(): | |
iters_test = 0 | |
for batch_idx, batch in enumerate(val_dataloader): | |
optimizer.zero_grad() | |
waves = batch[0] | |
batch = [b.to(device) for b in batch[1:]] | |
texts, input_lengths, _, _, mels, mel_input_length, _ = batch | |
with torch.no_grad(): | |
mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda') | |
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
s2s_attn = s2s_attn[..., 1:] | |
s2s_attn = s2s_attn.transpose(-1, -2) | |
text_mask = length_to_mask(input_lengths).to(texts.device) | |
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2) | |
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float() | |
attn_mask = (attn_mask < 1) | |
s2s_attn.masked_fill_(attn_mask, 0.0) | |
# encode | |
t_en = model.text_encoder(texts, input_lengths, text_mask) | |
asr = (t_en @ s2s_attn) | |
# get clips | |
mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load | |
mel_len = min([int(mel_input_length.min().item() / 2 - 1), max_len // 2]) | |
en = [] | |
gt = [] | |
wav = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item() / 2) | |
random_start = np.random.randint(0, mel_length - mel_len) | |
en.append(asr[bib, :, random_start:random_start+mel_len]) | |
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)]) | |
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300] | |
wav.append(torch.from_numpy(y).to('cuda')) | |
wav = torch.stack(wav).float().detach() | |
en = torch.stack(en) | |
gt = torch.stack(gt).detach() | |
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) | |
s = model.style_encoder(gt.unsqueeze(1)) | |
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) | |
y_rec = model.decoder(en, F0_real, real_norm, s) | |
loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) | |
loss_test += accelerator.gather(loss_mel).mean().item() | |
iters_test += 1 | |
if accelerator.is_main_process: | |
print('Epochs:', epoch + 1) | |
log_print('Validation loss: %.3f' % (loss_test / iters_test) + '\n\n\n\n', logger) | |
print('\n\n\n') | |
writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1) | |
attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze()) | |
writer.add_figure('eval/attn', attn_image, epoch) | |
with torch.no_grad(): | |
for bib in range(len(asr)): | |
mel_length = int(mel_input_length[bib].item()) | |
gt = mels[bib, :, :mel_length].unsqueeze(0) | |
en = asr[bib, :, :mel_length // 2].unsqueeze(0) | |
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) | |
F0_real = F0_real.unsqueeze(0) | |
s = model.style_encoder(gt.unsqueeze(1)) | |
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) | |
y_rec = model.decoder(en, F0_real, real_norm, s) | |
writer.add_audio('eval/y' + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr) | |
if epoch == 0: | |
writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr) | |
if bib >= 6: | |
break | |
if epoch % saving_epoch == 0: | |
if (loss_test / iters_test) < best_loss: | |
best_loss = loss_test / iters_test | |
print('Saving..') | |
state = { | |
'net': {key: model[key].state_dict() for key in model}, | |
'optimizer': optimizer.state_dict(), | |
'iters': iters, | |
'val_loss': loss_test / iters_test, | |
'epoch': epoch, | |
} | |
save_path = osp.join(log_dir, 'epoch_1st_%05d.pth' % epoch) | |
torch.save(state, save_path) | |
if accelerator.is_main_process: | |
print('Saving..') | |
state = { | |
'net': {key: model[key].state_dict() for key in model}, | |
'optimizer': optimizer.state_dict(), | |
'iters': iters, | |
'val_loss': loss_test / iters_test, | |
'epoch': epoch, | |
} | |
save_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth')) | |
torch.save(state, save_path) | |
if __name__=="__main__": | |
main() | |