File size: 3,095 Bytes
54b4471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55223b8
 
 
9840e47
55223b8
 
 
 
54b4471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a657e9
 
 
 
 
 
54b4471
 
 
 
 
 
 
 
55223b8
 
54b4471
 
 
55223b8
54b4471
 
 
4a657e9
 
54b4471
4a657e9
 
54b4471
 
 
 
0a78ec2
55223b8
3f98068
 
 
 
4a657e9
a6be0a5
54b4471
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import pandas as pd
import numpy as np
import pydicom
import os
from skimage import transform
import torch
from segment_anything import sam_model_registry
import matplotlib.pyplot as plt
from PIL import Image
import io

# Function to load bounding boxes from CSV
def load_bounding_boxes(csv_file):
    # Assuming CSV file has columns: 'filename', 'x_min', 'y_min', 'x_max', 'y_max'
    df = pd.read_csv(csv_file)
    return df

def load_image(file_path):
    if file_path.endswith(".dcm"):
        ds = pydicom.dcmread(file_path)
        img = ds.pixel_array
    else:
        img = np.array(Image.open(file_path).convert('L')) # Convert to grayscale
    H, W = img.shape
    return img, H, W

# MedSAM inference function
def medsam_inference(medsam_model, img, box, H, W, target_size):
    # Resize image and box to target size
    img_resized = transform.resize(img, (target_size, target_size), anti_aliasing=True)
    box_resized = np.array(box) * (target_size / np.array([W, H, W, H]))

    # Convert image to PyTorch tensor
    img_tensor = torch.from_numpy(img_resized).float().unsqueeze(0).unsqueeze(0).to(device)  # Add channel and batch dimension

    # Model expects box in format (x0, y0, x1, y1)
    box_tensor = torch.tensor(box_resized, dtype=torch.float32).unsqueeze(0).to(device)  # Add batch dimension

    # MedSAM inference
    img_embed = medsam_model.image_encoder(img_tensor)
    mask = medsam_model.predict(img_embed, box_tensor)

    # Post-process mask: resize back to original size
    mask_resized = transform.resize(mask[0].cpu().numpy(), (H, W))

    return mask_resized

# Function for visualizing images with masks
def visualize(image, mask, box):
    fig, ax = plt.subplots(1, 2, figsize=(10, 5))
    ax[0].imshow(image, cmap='gray')
    ax[0].add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], edgecolor="red", facecolor="none"))
    ax[1].imshow(image, cmap='gray')
    ax[1].imshow(mask, alpha=0.5, cmap="jet")
    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    plt.close(fig)
    buf.seek(0)
    return buf

# Main function for Gradio app
def process_images(file, x_min, y_min, x_max, y_max):
    image, H, W = load_image(file)

    # Initialize MedSAM model
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    medsam_model = sam_model_registry['vit_b'](checkpoint="medsam_vit_b.pth") # Ensure the correct path
    medsam_model = medsam_model.to(device)
    medsam_model.eval()

    box = [x_min, y_min, x_max, y_max]
    mask = medsam_inference(medsam_model, image, box, H, W, H) # Assuming target size is the same as the image height

    visualization = visualize(image, mask, box)
    return visualization.getvalue() # Returning the byte stream

# Set up Gradio interface
iface = gr.Interface(
    fn=process_images,
    inputs=[
        gr.File(label="MRI Slice (DICOM, PNG, etc.)"),
        gr.Number(label="X min"),
        gr.Number(label="Y min"),
        gr.Number(label="X max"),
        gr.Number(label="Y max")
    ],
    outputs="plot"
)

iface.launch()