Spaces:
Sleeping
Sleeping
dennistrujillo
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pydicom
|
5 |
+
import os
|
6 |
+
from skimage import transform
|
7 |
+
import torch
|
8 |
+
from segment_anything import sam_model_registry
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from PIL import Image
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import io
|
13 |
+
import cv2
|
14 |
+
import nrrd
|
15 |
+
from gradio_image_prompter import ImagePrompter
|
16 |
+
|
17 |
+
class PointPromptDemo:
|
18 |
+
def __init__(self, model):
|
19 |
+
self.model = model
|
20 |
+
self.model.eval()
|
21 |
+
self.image = None
|
22 |
+
self.image_embeddings = None
|
23 |
+
self.img_size = None
|
24 |
+
|
25 |
+
@torch.no_grad()
|
26 |
+
def infer(self, x, y):
|
27 |
+
coords_1024 = np.array([[[
|
28 |
+
x * 1024 / self.img_size[1],
|
29 |
+
y * 1024 / self.img_size[0]
|
30 |
+
]]])
|
31 |
+
coords_torch = torch.tensor(coords_1024, dtype=torch.float32).to(self.model.device)
|
32 |
+
labels_torch = torch.tensor([[1]], dtype=torch.long).to(self.model.device)
|
33 |
+
point_prompt = (coords_torch, labels_torch)
|
34 |
+
|
35 |
+
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
36 |
+
points=point_prompt,
|
37 |
+
boxes=None,
|
38 |
+
masks=None,
|
39 |
+
)
|
40 |
+
low_res_logits, _ = self.model.mask_decoder(
|
41 |
+
image_embeddings=self.image_embeddings,
|
42 |
+
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
43 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
44 |
+
dense_prompt_embeddings=dense_embeddings,
|
45 |
+
multimask_output=False,
|
46 |
+
)
|
47 |
+
|
48 |
+
low_res_probs = torch.sigmoid(low_res_logits)
|
49 |
+
low_res_pred = F.interpolate(
|
50 |
+
low_res_probs,
|
51 |
+
size=self.img_size,
|
52 |
+
mode='bilinear',
|
53 |
+
align_corners=False
|
54 |
+
)
|
55 |
+
low_res_pred = low_res_pred.detach().cpu().numpy().squeeze()
|
56 |
+
|
57 |
+
seg = np.uint8(low_res_pred > 0.5)
|
58 |
+
|
59 |
+
return seg
|
60 |
+
|
61 |
+
def set_image(self, image):
|
62 |
+
self.img_size = image.shape[:2]
|
63 |
+
if len(image.shape) == 2:
|
64 |
+
image = np.repeat(image[:,:,None], 3, -1)
|
65 |
+
self.image = image
|
66 |
+
image_preprocess = self.preprocess_image(self.image)
|
67 |
+
with torch.no_grad():
|
68 |
+
self.image_embeddings = self.model.image_encoder(image_preprocess)
|
69 |
+
|
70 |
+
def preprocess_image(self, image):
|
71 |
+
img_resize = cv2.resize(
|
72 |
+
image,
|
73 |
+
(1024, 1024),
|
74 |
+
interpolation=cv2.INTER_CUBIC
|
75 |
+
)
|
76 |
+
img_resize = (img_resize - img_resize.min()) / np.clip(img_resize.max() - img_resize.min(), a_min=1e-8, a_max=None)
|
77 |
+
assert np.max(img_resize)<=1.0 and np.min(img_resize)>=0.0, 'image should be normalized to [0, 1]'
|
78 |
+
img_tensor = torch.tensor(img_resize).float().permute(2, 0, 1).unsqueeze(0).to(self.model.device)
|
79 |
+
return img_tensor
|
80 |
+
|
81 |
+
def load_image(file_path):
|
82 |
+
if file_path.endswith(".dcm"):
|
83 |
+
ds = pydicom.dcmread(file_path)
|
84 |
+
img = ds.pixel_array
|
85 |
+
elif file_path.endswith(".nrrd"):
|
86 |
+
img, _ = nrrd.read(file_path)
|
87 |
+
else:
|
88 |
+
img = np.array(Image.open(file_path))
|
89 |
+
|
90 |
+
if len(img.shape) == 2:
|
91 |
+
img = np.stack((img,)*3, axis=-1)
|
92 |
+
|
93 |
+
return img
|
94 |
+
|
95 |
+
def visualize(image, mask):
|
96 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
97 |
+
ax[0].imshow(image)
|
98 |
+
ax[1].imshow(image)
|
99 |
+
ax[1].imshow(mask, alpha=0.5, cmap="jet")
|
100 |
+
plt.tight_layout()
|
101 |
+
|
102 |
+
buf = io.BytesIO()
|
103 |
+
fig.savefig(buf, format='png')
|
104 |
+
plt.close(fig)
|
105 |
+
buf.seek(0)
|
106 |
+
pil_img = Image.open(buf)
|
107 |
+
|
108 |
+
return pil_img
|
109 |
+
|
110 |
+
def process_images(img_dict):
|
111 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
112 |
+
|
113 |
+
img = img_dict['image']
|
114 |
+
points = img_dict['points'][0]
|
115 |
+
if len(points) < 2:
|
116 |
+
raise ValueError("At least one point is required for ROI selection.")
|
117 |
+
|
118 |
+
x, y = points[0], points[1]
|
119 |
+
|
120 |
+
model_checkpoint_path = "medsam_point_prompt_flare22.pth"
|
121 |
+
medsam_model = sam_model_registry['vit_b'](checkpoint=model_checkpoint_path)
|
122 |
+
medsam_model = medsam_model.to(device)
|
123 |
+
medsam_model.eval()
|
124 |
+
|
125 |
+
point_prompt_demo = PointPromptDemo(medsam_model)
|
126 |
+
point_prompt_demo.set_image(img)
|
127 |
+
|
128 |
+
mask = point_prompt_demo.infer(x, y)
|
129 |
+
|
130 |
+
visualization = visualize(img, mask)
|
131 |
+
return visualization
|
132 |
+
|
133 |
+
iface = gr.Interface(
|
134 |
+
fn=process_images,
|
135 |
+
inputs=[
|
136 |
+
ImagePrompter(label="Image")
|
137 |
+
],
|
138 |
+
outputs=[
|
139 |
+
gr.Image(type="pil", label="Processed Image")
|
140 |
+
],
|
141 |
+
title="ROI Selection with MEDSAM",
|
142 |
+
description="Upload an image (including NRRD files) and select a point for ROI processing."
|
143 |
+
)
|
144 |
+
|
145 |
+
iface.launch()
|