Commit
•
18ddd47
1
Parent(s):
e16200c
Update app.py
Browse files
app.py
CHANGED
@@ -111,19 +111,19 @@ def calc_flops(vocab_size, hidden_size, sequence_length, num_layers, kv_size_rat
|
|
111 |
|
112 |
|
113 |
# ---- Gradio Interface ---- #
|
114 |
-
with gr.Blocks() as demo:
|
115 |
-
|
116 |
-
with gr.Tabs():
|
117 |
gr.Markdown("""
|
118 |
This app is a re-creation of [this calculator](https://github.com/EleutherAI/cookbook/tree/main/calc) from EleutherAI.
|
119 |
|
120 |
Before training or inference even begins, common practical questions about potential models must be answered such as:
|
121 |
-
|
122 |
1. How many parameters are we targeting? How should those parameters be allocated within the model?
|
123 |
1. How many FLOPs does the model from step 1 take to train on t tokens? How about inference?
|
124 |
1. How much memory does the model from step 1 take to train/infer on d devices? What memory-saving strategies (e.g. parallelism, quantization, etc) are necessary to fit the model on device memory?
|
125 |
""")
|
126 |
-
|
|
|
|
|
127 |
gr.Markdown("""
|
128 |
## Memory Calculation
|
129 |
|
@@ -131,293 +131,295 @@ with gr.Blocks() as demo:
|
|
131 |
Take this estimation with a grain of salt, because every implementation is different and these calculations were written to match the GPT-NeoX library as close as possible.
|
132 |
Even for other training and inference libraries, however, we expect our script to give approximate memory estimations within acceptable error.
|
133 |
(Please see [LLM finetuning memory requirements](https://blog.scottlogic.com/2023/11/24/llm-mem.html) for a treatment of how specific memory costs may vary framework-to-framework). Other good resources that we consulted are the [ZeRO Paper](https://arxiv.org/abs/1910.02054) and [Reducing Activation Recomputation in Large Transformer Models](https://arxiv.org/pdf/2205.05198.pdf).
|
134 |
-
|
|
|
|
|
135 |
## To Use
|
136 |
Fill in the required details below and click 'Calculate Memory' to get a result.
|
137 |
""")
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
sequence_length = gr.Number(
|
146 |
-
label="Sequence Length",
|
147 |
-
value=2048,
|
148 |
-
info="Sequence length used for training"
|
149 |
-
)
|
150 |
-
vocab_size = gr.Number(
|
151 |
-
label="Vocab Size",
|
152 |
-
value=51200,
|
153 |
-
info="How many tokens are in the embedding layer"
|
154 |
-
)
|
155 |
-
hidden_size = gr.Number(
|
156 |
-
label="Hidden Size",
|
157 |
-
value=6144,
|
158 |
-
info="Dimension of the model's hidden size"
|
159 |
-
)
|
160 |
-
num_attention_heads = gr.Number(
|
161 |
-
label="Number of Attention Heads",
|
162 |
-
value=64,
|
163 |
-
info="Number of attention heads used in the model"
|
164 |
-
)
|
165 |
-
num_layers = gr.Number(
|
166 |
-
label="Number of Layers",
|
167 |
-
value=44,
|
168 |
-
info="Number of transformer layers used in the model"
|
169 |
-
)
|
170 |
-
with gr.Column("User Defined"):
|
171 |
-
num_gpus = gr.Number(
|
172 |
-
label="Number of GPUs",
|
173 |
-
value=1,
|
174 |
-
info="Number of GPUs used for training"
|
175 |
)
|
176 |
-
|
177 |
-
label="
|
178 |
-
value=
|
179 |
-
info="
|
180 |
-
)
|
181 |
-
pipeline_parallel_size = gr.Number(
|
182 |
-
label="Pipeline Parallel Size",
|
183 |
-
value=1,
|
184 |
-
info="Pipeline parallel degree (1 if not used)"
|
185 |
-
)
|
186 |
-
batch_size_per_gpu = gr.Number(
|
187 |
-
label="Batch Size per GPU",
|
188 |
-
value=8,
|
189 |
-
info="Batch size per GPU"
|
190 |
)
|
191 |
-
|
192 |
-
label="
|
193 |
-
value=
|
194 |
-
info="How
|
195 |
)
|
196 |
-
|
197 |
-
label="
|
198 |
-
value=
|
199 |
-
info="
|
200 |
)
|
201 |
-
|
202 |
-
label="
|
203 |
-
value=
|
204 |
-
info="
|
205 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
calc_mem,
|
211 |
inputs=[
|
212 |
hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib
|
213 |
],
|
214 |
outputs=memory_result
|
215 |
-
|
216 |
|
217 |
-
|
218 |
fn=update_from_hf_model,
|
219 |
inputs=[hf_model_name_or_path],
|
220 |
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
|
221 |
-
|
222 |
|
223 |
# Parameter Calculation Tab
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
""
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
value=False,
|
269 |
-
info="Whether
|
270 |
)
|
271 |
-
|
272 |
-
label="
|
273 |
-
value=
|
274 |
-
info="
|
275 |
)
|
276 |
-
|
277 |
-
label="
|
278 |
-
value=
|
279 |
-
info="
|
280 |
)
|
281 |
-
|
282 |
-
label="
|
283 |
-
value=1
|
284 |
-
info="
|
285 |
)
|
286 |
-
|
287 |
-
with gr.Accordion("MoE Parameters", open=False):
|
288 |
-
moe = gr.Checkbox(
|
289 |
-
label="MoE",
|
290 |
-
value=False,
|
291 |
-
info="Whether the model is MoE"
|
292 |
-
)
|
293 |
-
num_experts = gr.Number(
|
294 |
-
label="Number of Experts",
|
295 |
-
value=8,
|
296 |
-
info="Number of experts for MoE"
|
297 |
-
)
|
298 |
-
expert_interval = gr.Number(
|
299 |
-
label="Expert Interval",
|
300 |
-
value=1,
|
301 |
-
info="Expert interval for MoE"
|
302 |
-
)
|
303 |
-
topk = gr.Number(
|
304 |
-
label="Top k Routing",
|
305 |
-
value=1,
|
306 |
-
info="Top k routing for MoE"
|
307 |
-
)
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
)
|
336 |
-
vocab_size = gr.Number(
|
337 |
-
label="Vocab Size",
|
338 |
-
value=51200,
|
339 |
-
info="How many tokens are in the embedding layer"
|
340 |
-
)
|
341 |
-
hidden_size = gr.Number(
|
342 |
-
label="Hidden Size",
|
343 |
-
value=6144,
|
344 |
-
info="Dimension of the model's hidden size"
|
345 |
-
)
|
346 |
-
sequence_length = gr.Number(
|
347 |
-
label="Sequence Length",
|
348 |
-
value=2048,
|
349 |
-
info="Sequence length used for training"
|
350 |
-
)
|
351 |
-
num_layers = gr.Number(
|
352 |
-
label="Number of Layers",
|
353 |
-
value=44,
|
354 |
-
info="Number of transformer layers used in the model"
|
355 |
-
)
|
356 |
-
with gr.Column("Generatable"):
|
357 |
-
kv_size_ratio = gr.Number(
|
358 |
-
label="KV Size Ratio",
|
359 |
-
value=1.0,
|
360 |
-
info="Ratio of kv heads to query heads used in model. 1.0 for MHA"
|
361 |
)
|
362 |
-
|
363 |
-
label="
|
364 |
-
value=
|
365 |
-
info="How
|
366 |
)
|
367 |
-
|
368 |
-
label="
|
369 |
-
value=
|
370 |
-
info="
|
371 |
)
|
372 |
-
|
373 |
-
label="
|
374 |
-
value=
|
375 |
-
info="
|
376 |
)
|
377 |
-
|
378 |
-
label="
|
379 |
-
value=
|
380 |
-
info="
|
381 |
)
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
value=False,
|
385 |
-
info="Whether the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
)
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
num_experts = gr.Number(
|
396 |
-
label="Number of Experts",
|
397 |
-
value=128,
|
398 |
-
info="Number of experts for Mixture of Experts (MoE)"
|
399 |
-
)
|
400 |
-
expert_interval = gr.Number(
|
401 |
-
label="Expert Interval",
|
402 |
-
value=2,
|
403 |
-
info="Expert interval for Mixture of Experts (MoE)"
|
404 |
-
)
|
405 |
-
topk = gr.Number(
|
406 |
-
label="Top K Routing for MoE",
|
407 |
-
value=1,
|
408 |
-
info="Top k routing for Mixture of Experts (MoE)"
|
409 |
-
)
|
410 |
-
|
411 |
-
calc_flops_button = gr.Button("Calculate FLOPs")
|
412 |
-
flops_result = gr.JSON(label="FLOP Calculation Result")
|
413 |
-
calc_flops_button.click(
|
414 |
-
calc_flops,
|
415 |
-
inputs=[vocab_size, hidden_size, sequence_length, num_layers, kv_size_ratio, topk, moe, num_experts, expert_interval, batch_size, tokens, checkpoint_activations, ffn_expansion_factor, infer],
|
416 |
-
outputs=flops_result
|
417 |
-
)
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
|
423 |
demo.launch()
|
|
|
111 |
|
112 |
|
113 |
# ---- Gradio Interface ---- #
|
114 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
115 |
+
with gr.Accordion("Credits and General Idea", open=False):
|
|
|
116 |
gr.Markdown("""
|
117 |
This app is a re-creation of [this calculator](https://github.com/EleutherAI/cookbook/tree/main/calc) from EleutherAI.
|
118 |
|
119 |
Before training or inference even begins, common practical questions about potential models must be answered such as:
|
|
|
120 |
1. How many parameters are we targeting? How should those parameters be allocated within the model?
|
121 |
1. How many FLOPs does the model from step 1 take to train on t tokens? How about inference?
|
122 |
1. How much memory does the model from step 1 take to train/infer on d devices? What memory-saving strategies (e.g. parallelism, quantization, etc) are necessary to fit the model on device memory?
|
123 |
""")
|
124 |
+
with gr.Tab("Memory Calculation"):
|
125 |
+
#with gr.TabItem("Memory Calculation"):
|
126 |
+
with gr.Accordion("About Memory Calculation", open=False):
|
127 |
gr.Markdown("""
|
128 |
## Memory Calculation
|
129 |
|
|
|
131 |
Take this estimation with a grain of salt, because every implementation is different and these calculations were written to match the GPT-NeoX library as close as possible.
|
132 |
Even for other training and inference libraries, however, we expect our script to give approximate memory estimations within acceptable error.
|
133 |
(Please see [LLM finetuning memory requirements](https://blog.scottlogic.com/2023/11/24/llm-mem.html) for a treatment of how specific memory costs may vary framework-to-framework). Other good resources that we consulted are the [ZeRO Paper](https://arxiv.org/abs/1910.02054) and [Reducing Activation Recomputation in Large Transformer Models](https://arxiv.org/pdf/2205.05198.pdf).
|
134 |
+
""")
|
135 |
+
with gr.Accordion("How to use it?", open=False):
|
136 |
+
gr.Markdown("""
|
137 |
## To Use
|
138 |
Fill in the required details below and click 'Calculate Memory' to get a result.
|
139 |
""")
|
140 |
+
with gr.Row():
|
141 |
+
with gr.Column("Generatable"):
|
142 |
+
gr.Markdown("## Generatable")
|
143 |
+
with gr.Group():
|
144 |
+
hf_model_name_or_path = gr.Textbox(
|
145 |
+
label="HuggingFace Model Name or Path",
|
146 |
+
info="Name of the HuggingFace Hub repository or the local file path for it"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
+
sequence_length = gr.Number(
|
149 |
+
label="Sequence Length",
|
150 |
+
value=2048,
|
151 |
+
info="Sequence length used for training"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
153 |
+
vocab_size = gr.Number(
|
154 |
+
label="Vocab Size",
|
155 |
+
value=51200,
|
156 |
+
info="How many tokens are in the embedding layer"
|
157 |
)
|
158 |
+
hidden_size = gr.Number(
|
159 |
+
label="Hidden Size",
|
160 |
+
value=6144,
|
161 |
+
info="Dimension of the model's hidden size"
|
162 |
)
|
163 |
+
num_attention_heads = gr.Number(
|
164 |
+
label="Number of Attention Heads",
|
165 |
+
value=64,
|
166 |
+
info="Number of attention heads used in the model"
|
167 |
)
|
168 |
+
num_layers = gr.Number(
|
169 |
+
label="Number of Layers",
|
170 |
+
value=44,
|
171 |
+
info="Number of transformer layers used in the model"
|
172 |
+
)
|
173 |
+
with gr.Column("User Defined"):
|
174 |
+
gr.Markdown("## User Defined")
|
175 |
+
num_gpus = gr.Number(
|
176 |
+
label="Number of GPUs",
|
177 |
+
value=1,
|
178 |
+
info="Number of GPUs used for training"
|
179 |
+
)
|
180 |
+
tensor_parallel_size = gr.Number(
|
181 |
+
label="Tensor Parallel Size",
|
182 |
+
value=1,
|
183 |
+
info="Tensor parallel degree (1 if not used)"
|
184 |
+
)
|
185 |
+
pipeline_parallel_size = gr.Number(
|
186 |
+
label="Pipeline Parallel Size",
|
187 |
+
value=1,
|
188 |
+
info="Pipeline parallel degree (1 if not used)"
|
189 |
+
)
|
190 |
+
batch_size_per_gpu = gr.Number(
|
191 |
+
label="Batch Size per GPU",
|
192 |
+
value=8,
|
193 |
+
info="Batch size per GPU"
|
194 |
+
)
|
195 |
+
ffn_expansion_factor = gr.Number(
|
196 |
+
label="FFN Expansion Factor",
|
197 |
+
value=4,
|
198 |
+
info="How much the MLP hidden size expands"
|
199 |
+
)
|
200 |
+
is_mixed_precision = gr.Checkbox(
|
201 |
+
label="Mixed Precision",
|
202 |
+
value=True,
|
203 |
+
info="Whether mixed precision is enabled"
|
204 |
+
)
|
205 |
+
misc_mem_gib = gr.Number(
|
206 |
+
label="Miscellaneous Memory Overhead (GiB)",
|
207 |
+
value=5,
|
208 |
+
info="Miscellaneous memory overhead per GPU by DL frameworks, communication libraries, etc."
|
209 |
+
)
|
210 |
|
211 |
+
calc_memory_button = gr.Button("Calculate Memory")
|
212 |
+
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
213 |
+
calc_memory_button.click(
|
214 |
calc_mem,
|
215 |
inputs=[
|
216 |
hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib
|
217 |
],
|
218 |
outputs=memory_result
|
219 |
+
)
|
220 |
|
221 |
+
hf_model_name_or_path.change(
|
222 |
fn=update_from_hf_model,
|
223 |
inputs=[hf_model_name_or_path],
|
224 |
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
|
225 |
+
)
|
226 |
|
227 |
# Parameter Calculation Tab
|
228 |
+
with gr.TabItem("Parameter Calculation"):
|
229 |
+
gr.Markdown("""
|
230 |
+
## Parameter Calculation
|
231 |
+
|
232 |
+
Parameter Calculation calculates the number of parameters present in a given model based on its hyperparams.
|
233 |
+
Such calculations are important to determine memory overheads, FLOPs, or to determine the size of an unknown transformer model.
|
234 |
+
We also found the following resources helpful:
|
235 |
+
[How does GPT-3 spend its 175B parameters?](https://www.lesswrong.com/posts/3duR8CrvcHywrnhLo/how-does-gpt-3-spend-its-175b-parameters)
|
236 |
+
and [LLM Parameter Counting](https://kipp.ly/transformer-param-count/).
|
237 |
+
## How To Use
|
238 |
+
Simply input the model details, such as the hidden size, number of layers, and attention heads, and press 'Calculate Parameters' to get a result.
|
239 |
+
""")
|
240 |
+
with gr.Row():
|
241 |
+
with gr.Column("Generatable"):
|
242 |
+
with gr.Group():
|
243 |
+
hf_model_name_or_path = gr.Textbox(
|
244 |
+
label="HuggingFace Model Name or Path",
|
245 |
+
info="Name of the HuggingFace Hub repository or the local file path for it"
|
246 |
+
)
|
247 |
+
vocab_size = gr.Number(
|
248 |
+
label="Vocab Size",
|
249 |
+
value=51200,
|
250 |
+
info="How many tokens are in the embedding layer"
|
251 |
+
)
|
252 |
+
hidden_size = gr.Number(
|
253 |
+
label="Hidden Size",
|
254 |
+
value=6144,
|
255 |
+
info="Dimension of the model's hidden size"
|
256 |
+
)
|
257 |
+
sequence_length = gr.Number(
|
258 |
+
label="Sequence Length",
|
259 |
+
value=2048,
|
260 |
+
info="Sequence length used for training"
|
261 |
+
)
|
262 |
+
num_layers = gr.Number(
|
263 |
+
label="Number of Layers",
|
264 |
+
value=44,
|
265 |
+
info="Number of transformer layers used in the model"
|
266 |
+
)
|
267 |
+
with gr.Column("User Defined"):
|
268 |
+
tied_embeddings = gr.Checkbox(
|
269 |
+
label="Tied Embeddings",
|
270 |
+
value=False,
|
271 |
+
info="Whether embeddings are tied (shared between input and output)"
|
272 |
+
)
|
273 |
+
ffn_expansion_factor = gr.Number(
|
274 |
+
label="FFN Expansion Factor",
|
275 |
+
value=4,
|
276 |
+
info="How much the MLP hidden size expands"
|
277 |
+
)
|
278 |
+
num_mlp_linears = gr.Number(
|
279 |
+
label="Number of Linear Layers per MLP Block",
|
280 |
+
value=2,
|
281 |
+
info="How many linear layers per MLP block"
|
282 |
+
)
|
283 |
+
kv_size_ratio = gr.Number(
|
284 |
+
label="KV Size Ratio",
|
285 |
+
value=1.0,
|
286 |
+
info="Ratio of total query heads to key/value heads. 1.0 for MHA, 1/num_attention_heads for MQA"
|
287 |
+
)
|
288 |
+
|
289 |
+
with gr.Accordion("MoE Parameters", open=False):
|
290 |
+
moe = gr.Checkbox(
|
291 |
+
label="MoE",
|
292 |
value=False,
|
293 |
+
info="Whether the model is MoE"
|
294 |
)
|
295 |
+
num_experts = gr.Number(
|
296 |
+
label="Number of Experts",
|
297 |
+
value=8,
|
298 |
+
info="Number of experts for MoE"
|
299 |
)
|
300 |
+
expert_interval = gr.Number(
|
301 |
+
label="Expert Interval",
|
302 |
+
value=1,
|
303 |
+
info="Expert interval for MoE"
|
304 |
)
|
305 |
+
topk = gr.Number(
|
306 |
+
label="Top k Routing",
|
307 |
+
value=1,
|
308 |
+
info="Top k routing for MoE"
|
309 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
+
calc_param_button = gr.Button("Calculate Parameters")
|
312 |
+
param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
|
313 |
+
calc_param_button.click(calc_params,
|
314 |
+
inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
|
315 |
+
outputs=param_result)
|
316 |
|
317 |
+
hf_model_name_or_path.change(fn=update_from_hf_model,
|
318 |
+
inputs=[hf_model_name_or_path],
|
319 |
+
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length])
|
320 |
|
321 |
+
# New FLOP Calculation Tab
|
322 |
+
with gr.TabItem("FLOP Calculation"):
|
323 |
+
gr.Markdown("""
|
324 |
+
## FLOP Calculation
|
325 |
+
|
326 |
+
FLOP Calculation calculates the number of theoretical FLOPs required to train a model on t tokens.
|
327 |
+
See [Transformers Math 101](https://blog.eleuther.ai/transformer-math/) for more details on how FLOPs are calculated.
|
328 |
+
Other good resources that we consulted are the [Chinchilla Paper](https://arxiv.org/abs/2203.15556) and
|
329 |
+
[Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://people.eecs.berkeley.edu/~matei/papers/2021/sc_megatron_lm.pdf).
|
330 |
+
""")
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column("Generatable"):
|
333 |
+
with gr.Group():
|
334 |
+
hf_model_name_or_path = gr.Textbox(
|
335 |
+
label="HuggingFace Model Name or Path",
|
336 |
+
info="Name of the HuggingFace Hub repository or the local file path for it"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
)
|
338 |
+
vocab_size = gr.Number(
|
339 |
+
label="Vocab Size",
|
340 |
+
value=51200,
|
341 |
+
info="How many tokens are in the embedding layer"
|
342 |
)
|
343 |
+
hidden_size = gr.Number(
|
344 |
+
label="Hidden Size",
|
345 |
+
value=6144,
|
346 |
+
info="Dimension of the model's hidden size"
|
347 |
)
|
348 |
+
sequence_length = gr.Number(
|
349 |
+
label="Sequence Length",
|
350 |
+
value=2048,
|
351 |
+
info="Sequence length used for training"
|
352 |
)
|
353 |
+
num_layers = gr.Number(
|
354 |
+
label="Number of Layers",
|
355 |
+
value=44,
|
356 |
+
info="Number of transformer layers used in the model"
|
357 |
)
|
358 |
+
with gr.Column("Generatable"):
|
359 |
+
kv_size_ratio = gr.Number(
|
360 |
+
label="KV Size Ratio",
|
361 |
+
value=1.0,
|
362 |
+
info="Ratio of kv heads to query heads used in model. 1.0 for MHA"
|
363 |
+
)
|
364 |
+
ffn_expansion_factor = gr.Number(
|
365 |
+
label="FFN Expansion Factor",
|
366 |
+
value=4,
|
367 |
+
info="How much the MLP hidden size expands"
|
368 |
+
)
|
369 |
+
batch_size = gr.Number(
|
370 |
+
label="Batch Size",
|
371 |
+
value=1,
|
372 |
+
info="Global batch size in units of samples"
|
373 |
+
)
|
374 |
+
tokens = gr.Number(
|
375 |
+
label="Number of GigaTokens",
|
376 |
+
value=300,
|
377 |
+
info="Total number of GigaTokens for training"
|
378 |
+
)
|
379 |
+
checkpoint_activations = gr.Checkbox(
|
380 |
+
label="Checkpoint Activations",
|
381 |
+
value=True,
|
382 |
+
info="Whether Megatron-style activation checkpointing is being used"
|
383 |
+
)
|
384 |
+
infer = gr.Checkbox(
|
385 |
+
label="Inference-Only",
|
386 |
+
value=False,
|
387 |
+
info="Whether the model is being used for inference-only"
|
388 |
+
)
|
389 |
+
|
390 |
+
# MoE parameters hidden in accordion
|
391 |
+
with gr.Accordion("Mixture of Experts (MoE)", open=False):
|
392 |
+
moe = gr.Checkbox(
|
393 |
+
label="Mixture of Experts (MoE)",
|
394 |
value=False,
|
395 |
+
info="Whether the model uses Mixture of Experts"
|
396 |
+
)
|
397 |
+
num_experts = gr.Number(
|
398 |
+
label="Number of Experts",
|
399 |
+
value=128,
|
400 |
+
info="Number of experts for Mixture of Experts (MoE)"
|
401 |
+
)
|
402 |
+
expert_interval = gr.Number(
|
403 |
+
label="Expert Interval",
|
404 |
+
value=2,
|
405 |
+
info="Expert interval for Mixture of Experts (MoE)"
|
406 |
+
)
|
407 |
+
topk = gr.Number(
|
408 |
+
label="Top K Routing for MoE",
|
409 |
+
value=1,
|
410 |
+
info="Top k routing for Mixture of Experts (MoE)"
|
411 |
)
|
412 |
|
413 |
+
calc_flops_button = gr.Button("Calculate FLOPs")
|
414 |
+
flops_result = gr.JSON(label="FLOP Calculation Result")
|
415 |
+
calc_flops_button.click(
|
416 |
+
calc_flops,
|
417 |
+
inputs=[vocab_size, hidden_size, sequence_length, num_layers, kv_size_ratio, topk, moe, num_experts, expert_interval, batch_size, tokens, checkpoint_activations, ffn_expansion_factor, infer],
|
418 |
+
outputs=flops_result
|
419 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
+
hf_model_name_or_path.change(fn=update_from_hf_model,
|
422 |
+
inputs=[hf_model_name_or_path],
|
423 |
+
outputs=[num_layers, hidden_size, vocab_size, sequence_length])
|
424 |
|
425 |
demo.launch()
|