Commit
•
d65669a
1
Parent(s):
dcb01bb
Update app.py
Browse files
app.py
CHANGED
@@ -13,19 +13,18 @@ def convert_params(params):
|
|
13 |
return "%s %s" % (s, size_name[i])
|
14 |
|
15 |
# Get Hugging Face model configuration and update the parameters
|
16 |
-
def get_hf_model_args(hf_model_name_or_path
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
sequence_length = config.get("max_position_embeddings", sequence_length)
|
29 |
|
30 |
return {
|
31 |
"num_layers": num_layers,
|
@@ -37,16 +36,17 @@ def get_hf_model_args(hf_model_name_or_path, num_layers, hidden_size, num_attent
|
|
37 |
|
38 |
# ---- Memory Calculation ---- #
|
39 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
40 |
-
model_params, hf_error = get_hf_model_args(hf_model_name_or_path
|
41 |
|
42 |
if hf_error:
|
43 |
return hf_error
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
52 |
embed_params = 2 * vocab_size * hidden_size
|
@@ -62,37 +62,19 @@ def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_par
|
|
62 |
|
63 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
64 |
|
65 |
-
# ----
|
66 |
-
def
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
|
79 |
-
ffn_params = ffn_expert_params + ffn_dense_params
|
80 |
-
gating_params = num_expert_layers * hidden_size * num_experts
|
81 |
-
else:
|
82 |
-
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
83 |
-
|
84 |
-
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
|
85 |
-
|
86 |
-
if moe:
|
87 |
-
total_params += gating_params
|
88 |
-
|
89 |
-
return f"""
|
90 |
-
Embedding parameters: {convert_params(embedding_params)}
|
91 |
-
Attention parameters: {convert_params(attention_params)}
|
92 |
-
FFN parameters: {convert_params(ffn_params)}
|
93 |
-
{'Gating parameters: ' + convert_params(gating_params) if moe else ''}
|
94 |
-
Total Params in the Model: {convert_params(total_params)}
|
95 |
-
"""
|
96 |
|
97 |
# ---- Gradio Interface ---- #
|
98 |
with gr.Blocks() as demo:
|
@@ -119,6 +101,10 @@ with gr.Blocks() as demo:
|
|
119 |
inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib],
|
120 |
outputs=memory_result)
|
121 |
|
|
|
|
|
|
|
|
|
122 |
# Parameter Calculation Tab
|
123 |
with gr.TabItem("Parameter Calculation"):
|
124 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
|
|
13 |
return "%s %s" % (s, size_name[i])
|
14 |
|
15 |
# Get Hugging Face model configuration and update the parameters
|
16 |
+
def get_hf_model_args(hf_model_name_or_path):
|
17 |
+
try:
|
18 |
+
config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
|
19 |
+
except Exception as e:
|
20 |
+
return None, f"Error fetching Hugging Face model: {str(e)}"
|
21 |
+
|
22 |
+
# Extract relevant values from the config
|
23 |
+
num_layers = config.get("num_hidden_layers", None)
|
24 |
+
hidden_size = config.get("hidden_size", None)
|
25 |
+
num_attention_heads = config.get("num_attention_heads", None)
|
26 |
+
vocab_size = config.get("vocab_size", None)
|
27 |
+
sequence_length = config.get("max_position_embeddings", None)
|
|
|
28 |
|
29 |
return {
|
30 |
"num_layers": num_layers,
|
|
|
36 |
|
37 |
# ---- Memory Calculation ---- #
|
38 |
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
|
39 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else (None, None)
|
40 |
|
41 |
if hf_error:
|
42 |
return hf_error
|
43 |
|
44 |
+
if model_params:
|
45 |
+
num_layers = model_params["num_layers"] or num_layers
|
46 |
+
hidden_size = model_params["hidden_size"] or hidden_size
|
47 |
+
num_attention_heads = model_params["num_attention_heads"] or num_attention_heads
|
48 |
+
vocab_size = model_params["vocab_size"] or vocab_size
|
49 |
+
sequence_length = model_params["sequence_length"] or sequence_length
|
50 |
|
51 |
dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
|
52 |
embed_params = 2 * vocab_size * hidden_size
|
|
|
62 |
|
63 |
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
64 |
|
65 |
+
# ---- Update Gradio inputs with Hugging Face model config ---- #
|
66 |
+
def update_from_hf_model(hf_model_name_or_path):
|
67 |
+
model_params, hf_error = get_hf_model_args(hf_model_name_or_path)
|
68 |
+
|
69 |
+
if hf_error:
|
70 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), hf_error
|
71 |
+
|
72 |
+
return (gr.update(value=model_params["num_layers"]),
|
73 |
+
gr.update(value=model_params["hidden_size"]),
|
74 |
+
gr.update(value=model_params["num_attention_heads"]),
|
75 |
+
gr.update(value=model_params["vocab_size"]),
|
76 |
+
gr.update(value=model_params["sequence_length"]),
|
77 |
+
"")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
# ---- Gradio Interface ---- #
|
80 |
with gr.Blocks() as demo:
|
|
|
101 |
inputs=[hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib],
|
102 |
outputs=memory_result)
|
103 |
|
104 |
+
hf_model_name_or_path.change(fn=update_from_hf_model,
|
105 |
+
inputs=[hf_model_name_or_path],
|
106 |
+
outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result])
|
107 |
+
|
108 |
# Parameter Calculation Tab
|
109 |
with gr.TabItem("Parameter Calculation"):
|
110 |
vocab_size = gr.Number(label="Vocab Size", value=51200)
|