goemotions2 / app.py
devanshsrivastav's picture
streamlit app
f3007f9
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import requests
import json
import os
from dotenv import load_dotenv
load_dotenv()
# AI model code
HF_API_KEY = os.getenv("HF_API_KEY")
# API_URL_ED = "https://api-inference.huggingface.co/models/j-hartmann/emotion-english-distilroberta-base" #alternate ED model(slow loading on first run)
API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en"
API_URL_SD = "https://api-inference.huggingface.co/models/NLP-LTU/bertweet-large-sexism-detector"
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
def query(payload):
response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload)
response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload)
response_SD = requests.request("POST", API_URL_SD, headers=headers, json=payload)
return (json.loads(response_ED.content.decode("utf-8")),json.loads(response_HS.content.decode("utf-8")),json.loads(response_SD.content.decode("utf-8")))
st.set_page_config(
page_title="GoEmotions Dashboard",
layout="wide"
)
# Set page title
st.title("GoEmotions Dashboard - Analyzing Emotions in Text")
# Define color map for each emotion category
color_map = {
'admiration': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
'amusement': ['#ff7f0e', '#98df8a', '#2ca02c', '#d62728'],
'anger': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'annoyance': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'approval': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
'caring': ['#98df8a', '#2ca02c', '#FF69B4', '#d62728'],
'confusion': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
'curiosity': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
'desire': ['#2ca02c', '#ff7f0e', '#98df8a', '#d62728'],
'disappointment': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'disapproval': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'disgust': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'embarrassment': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
'excitement': ['#ff7f0e', '#2ca02c', '#98df8a', '#d62728'],
'fear': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'gratitude': ['#98df8a', '#2ca02c', '#1f77b4', '#d62728'],
'grief': ['#ffbb78', '#d62728', '#bcbd22', '#ff7f0e'],
'joy': ['#ff7f0e', '#98df8a', '#2ca02c', '#d62728'],
'love': ['#FF69B4', '#98df8a', '#2ca02c', '#d62728'],
'nervousness': ['#ffbb78', '#ff7f0e', '#9467bd', '#d62728'],
'optimism': ['#98df8a', '#2ca02c', '#1f77b4', '#d62728'],
'pride': ['#98df8a', '#ff7f0e', '#1f77b4', '#d62728'],
'realization': ['#9467bd', '#ff7f0e', '#ffbb78', '#d62728'],
'relief': ['#1f77b4', '#98df8a', '#2ca02c', '#d62728'],
'remorse': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'sadness': ['#ffbb78', '#ff7f0e', '#d62728', '#bcbd22'],
'surprise': ['#ff7f0e', '#ffbb78', '#9467bd', '#d62728'],
'neutral': ['#2ca02c', '#98df8a', '#1f77b4', '#d62728']
}
# Labels for Hate Speech Classification
label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "Inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"}
# Define default options
default_options = [
"I'm so excited for my vacation next week!",
"I'm feeling so stressed about work.",
"I just received great news from my doctor!",
"I can't wait to see my best friend tomorrow.",
"I'm feeling so lonely and sad today."
"I'm so angry at my neighbor for being so rude.",
"You are so annoying!",
"You people from small towns are so dumb.",
"If you don't agree with me, you are a moron.",
"I hate you so much!",
"If you don't listen to me, I'll beat you up!",
]
with st.sidebar:
# Create dropdown with default options
selected_option = st.selectbox("Select a default option or enter your own text:", default_options)
# Display text input with selected option as default value
text_input = st.text_area("Enter text to analyze emotions:", value = selected_option, height=100)
# Add submit button
submit = st.button("Submit")
# If submit button is clicked
if submit:
# Call API and get predicted probabilities for each emotion category and hate speech classification
payload = {"inputs": text_input, "options": {"wait_for_model": True, "use_cache": True}}
response_ED, response_HS, response_SD = query(payload)
predicted_probabilities_ED = response_ED[0]
predicted_probabilities_HS = response_HS[0]
predicted_probabilities_SD = response_SD[0]
# Creating columns to visualize the results
ED, _, HS, __, SD = st.columns([4,1,2,1,2])
with ED:
# Get the top 4 emotion categories and their scores
top_emotions = predicted_probabilities_ED[:4]
top_scores = [e['score'] for e in top_emotions]
# Create the gauge charts for the top 4 emotion categories
fig = make_subplots(rows=2, cols=2, specs=[[{'type': 'indicator'}, {'type': 'indicator'}],
[{'type': 'indicator'}, {'type': 'indicator'}]],
vertical_spacing=0.4)
for i, emotion in enumerate(top_emotions):
# Get the emotion category, color, and normalized score for the current emotion
category = emotion['label']
color = color_map[category]
value = top_scores[i] * 100
# Calculate the row and column position for adding the trace to the subplots
row = i // 2 + 1
col = i % 2 + 1
# Add a gauge chart trace for the current emotion category
fig.add_trace(go.Indicator(
domain={'x': [0, 1], 'y': [0, 1]},
value=value,
mode="gauge+number",
title={'text': category.capitalize()},
gauge={'axis': {'range': [None, 100]},
'bar': {'color': color[3]},
'bgcolor': 'white',
'borderwidth': 2,
'bordercolor': color[1],
'steps': [{'range': [0, 33], 'color': color[0]},
{'range': [33, 66], 'color': color[1]},
{'range': [66, 100], 'color': color[2]}],
'threshold': {'line': {'color': "black", 'width': 4},
'thickness': 0.5,
'value': 50}}), row=row, col=col)
# Update the layout of the figure
fig.update_layout(height=400, margin=dict(t=50, b=5, l=0, r=0))
# Display gauge charts
st.text("")
st.text("")
st.text("")
st.subheader("Emotion Detection")
st.text("")
st.plotly_chart(fig, use_container_width=True)
with _:
st.text("")
with HS:
# Display Hate Speech Classification
hate_detection = label_hs[predicted_probabilities_HS[0]['label']]
st.text("")
st.text("")
st.text("")
st.subheader("Hate Speech Analysis")
st.text("")
st.image(f"assets/{hate_detection}.jpg", width=200)
st.text("")
st.text("")
st.markdown(f"#### The given text is: {hate_detection}")
with __:
st.text("")
with SD:
label_SD = predicted_probabilities_SD[0]['label'].title()
st.text("")
st.text("")
st.text("")
st.subheader("Sexism Detection")
st.text("")
st.image(f"assets/{label_SD}.jpg", width=200)
st.text("")
st.text("")
st.markdown(f"#### The given text is: {label_SD}")
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)