File size: 5,412 Bytes
7a60200
 
d3ce1ea
7a60200
d3ce1ea
 
 
 
7a60200
 
 
bffe517
 
bb49284
 
 
d3ce1ea
 
56b6608
d3ce1ea
b18f491
d3ce1ea
 
 
 
 
 
 
 
7a60200
 
d3ce1ea
7a60200
d3ce1ea
 
bffe517
 
 
 
 
d3ce1ea
 
 
0bfe8cd
d3ce1ea
7a60200
d3ce1ea
bffe517
7a60200
d3ce1ea
 
7a60200
d3ce1ea
 
 
7a60200
d3ce1ea
7a60200
d3ce1ea
7a60200
bffe517
 
 
 
 
 
 
 
d3ce1ea
0bfe8cd
9f92a35
d3ce1ea
7a60200
 
 
bffe517
9f92a35
7396db7
d3ce1ea
 
 
 
7a60200
 
 
bffe517
7a60200
 
 
9f92a35
7a60200
 
 
bffe517
 
 
 
 
 
 
7a60200
 
d3ce1ea
adfe793
7a60200
 
9f92a35
 
 
bffe517
 
 
9f92a35
 
 
 
 
 
 
 
 
d3ce1ea
9f92a35
d3ce1ea
 
 
 
 
7a60200
d3ce1ea
7a60200
d3ce1ea
 
7a60200
d3ce1ea
 
 
b1efb57
7a60200
d3ce1ea
9f92a35
d3ce1ea
7a60200
9f92a35
 
 
 
bffe517
9f92a35
 
 
9ec11c2
 
 
d3ce1ea
26cdac6
bb49284
 
b1efb57
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import spaces
from flask import Flask, request, jsonify
import os
from werkzeug.utils import secure_filename
import cv2
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import numpy as np
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import base64

app = Flask(__name__)

# Configuration
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov', 'webm'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

os.makedirs(UPLOAD_FOLDER, exist_ok=True)

# Device configuration
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'

mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()

model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()

# GradCAM setup
target_layers = [model.block8.branch1[-1]]
cam = GradCAM(model=model, target_layers=target_layers)
targets = [ClassifierOutputTarget(0)]

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@spaces.GPU
def process_frame(frame):
    face = mtcnn(frame)
    if face is None:
        return None, None, None

    face = face.unsqueeze(0)
    face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)

    face = face.to(DEVICE)
    face = face.to(torch.float32)
    face = face / 255.0

    with torch.no_grad():
        output = torch.sigmoid(model(face).squeeze(0))
        prediction = "fake" if output.item() >= 0.5 else "real"

    # Generate GradCAM
    grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
    grayscale_cam = grayscale_cam[0, :]
    
    face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().numpy()
    visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)

    return prediction, output.item(), visualization

@spaces.GPU
def analyze_video(video_path, sample_rate=30, top_n=5, detection_threshold=0.5):
    cap = cv2.VideoCapture(video_path)
    frame_count = 0
    fake_count = 0
    total_processed = 0
    frames_info = []
    confidence_scores = []

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        if frame_count % sample_rate == 0:
            rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            prediction, confidence, visualization = process_frame(rgb_frame)

            if prediction is not None:
                total_processed += 1
                confidence_scores.append(confidence)
                if prediction == "fake":
                    fake_count += 1

                frames_info.append({
                    'frame_number': frame_count,
                    'prediction': prediction,
                    'confidence': confidence,
                    'visualization': visualization
                })

        frame_count += 1

    cap.release()

    if total_processed > 0:
        fake_percentage = (fake_count / total_processed) * 100
        average_confidence = sum(confidence_scores) / len(confidence_scores)
        model_confidence = 1 - (sum((score - average_confidence) ** 2 for score in confidence_scores) / len(confidence_scores))
        
        frames_info.sort(key=lambda x: x['confidence'], reverse=True)
        top_frames = frames_info[:top_n]

        return {
            'fake_percentage': fake_percentage,
            'is_likely_deepfake': fake_percentage >= 60,
            'top_frames': top_frames,
            'model_confidence': model_confidence,
            'total_frames_analyzed': total_processed,
            'average_confidence_score': average_confidence,
            'detection_threshold': detection_threshold
        }
    else:
        return None

@app.route('/analyze', methods=['POST'])
def analyze_video_api():
    if 'video' not in request.files:
        return jsonify({'error': 'No video file provided'}), 400

    file = request.files['video']

    if file.filename == '':
        return jsonify({'error': 'No selected file'}), 400

    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)

        try:
            result = analyze_video(filepath)
            os.remove(filepath)  # Remove the file after analysis

            if result:
                # Convert numpy arrays to base64 encoded strings
                for frame in result['top_frames']:
                    frame['visualization'] = base64.b64encode(cv2.imencode('.png', frame['visualization'])[1]).decode('utf-8')

                return jsonify(result), 200
            else:
                return jsonify({'error': 'No frames could be processed'}), 400
        except Exception as e:
            os.remove(filepath)  # Remove the file if an error occurs
            return jsonify({'error': str(e)}), 500
    else:
        return jsonify({'error': f'Invalid file type: {file.filename}'}), 400

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)