File size: 5,412 Bytes
7a60200 d3ce1ea 7a60200 d3ce1ea 7a60200 bffe517 bb49284 d3ce1ea 56b6608 d3ce1ea b18f491 d3ce1ea 7a60200 d3ce1ea 7a60200 d3ce1ea bffe517 d3ce1ea 0bfe8cd d3ce1ea 7a60200 d3ce1ea bffe517 7a60200 d3ce1ea 7a60200 d3ce1ea 7a60200 d3ce1ea 7a60200 d3ce1ea 7a60200 bffe517 d3ce1ea 0bfe8cd 9f92a35 d3ce1ea 7a60200 bffe517 9f92a35 7396db7 d3ce1ea 7a60200 bffe517 7a60200 9f92a35 7a60200 bffe517 7a60200 d3ce1ea adfe793 7a60200 9f92a35 bffe517 9f92a35 d3ce1ea 9f92a35 d3ce1ea 7a60200 d3ce1ea 7a60200 d3ce1ea 7a60200 d3ce1ea b1efb57 7a60200 d3ce1ea 9f92a35 d3ce1ea 7a60200 9f92a35 bffe517 9f92a35 9ec11c2 d3ce1ea 26cdac6 bb49284 b1efb57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import spaces
from flask import Flask, request, jsonify
import os
from werkzeug.utils import secure_filename
import cv2
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import numpy as np
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import base64
app = Flask(__name__)
# Configuration
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov', 'webm'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# Device configuration
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()
model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()
# GradCAM setup
target_layers = [model.block8.branch1[-1]]
cam = GradCAM(model=model, target_layers=target_layers)
targets = [ClassifierOutputTarget(0)]
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
@spaces.GPU
def process_frame(frame):
face = mtcnn(frame)
if face is None:
return None, None, None
face = face.unsqueeze(0)
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
face = face.to(DEVICE)
face = face.to(torch.float32)
face = face / 255.0
with torch.no_grad():
output = torch.sigmoid(model(face).squeeze(0))
prediction = "fake" if output.item() >= 0.5 else "real"
# Generate GradCAM
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
grayscale_cam = grayscale_cam[0, :]
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().numpy()
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
return prediction, output.item(), visualization
@spaces.GPU
def analyze_video(video_path, sample_rate=30, top_n=5, detection_threshold=0.5):
cap = cv2.VideoCapture(video_path)
frame_count = 0
fake_count = 0
total_processed = 0
frames_info = []
confidence_scores = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % sample_rate == 0:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
prediction, confidence, visualization = process_frame(rgb_frame)
if prediction is not None:
total_processed += 1
confidence_scores.append(confidence)
if prediction == "fake":
fake_count += 1
frames_info.append({
'frame_number': frame_count,
'prediction': prediction,
'confidence': confidence,
'visualization': visualization
})
frame_count += 1
cap.release()
if total_processed > 0:
fake_percentage = (fake_count / total_processed) * 100
average_confidence = sum(confidence_scores) / len(confidence_scores)
model_confidence = 1 - (sum((score - average_confidence) ** 2 for score in confidence_scores) / len(confidence_scores))
frames_info.sort(key=lambda x: x['confidence'], reverse=True)
top_frames = frames_info[:top_n]
return {
'fake_percentage': fake_percentage,
'is_likely_deepfake': fake_percentage >= 60,
'top_frames': top_frames,
'model_confidence': model_confidence,
'total_frames_analyzed': total_processed,
'average_confidence_score': average_confidence,
'detection_threshold': detection_threshold
}
else:
return None
@app.route('/analyze', methods=['POST'])
def analyze_video_api():
if 'video' not in request.files:
return jsonify({'error': 'No video file provided'}), 400
file = request.files['video']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
try:
result = analyze_video(filepath)
os.remove(filepath) # Remove the file after analysis
if result:
# Convert numpy arrays to base64 encoded strings
for frame in result['top_frames']:
frame['visualization'] = base64.b64encode(cv2.imencode('.png', frame['visualization'])[1]).decode('utf-8')
return jsonify(result), 200
else:
return jsonify({'error': 'No frames could be processed'}), 400
except Exception as e:
os.remove(filepath) # Remove the file if an error occurs
return jsonify({'error': str(e)}), 500
else:
return jsonify({'error': f'Invalid file type: {file.filename}'}), 400
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860) |