File size: 3,676 Bytes
657d714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import spaces
from flask import Flask, request, jsonify
import os
from werkzeug.utils import secure_filename
import cv2
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import numpy as np
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import os

app = Flask(__name__)

# Configuration
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov', 'webm'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

os.makedirs(UPLOAD_FOLDER, exist_ok=True)

# Device configuration
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'

mtcnn = MTCNN(select_largest=False, post_process=False, device=DEVICE).to(DEVICE).eval()

model = InceptionResnetV1(pretrained="vggface2", classify=True, num_classes=1, device=DEVICE)
# Model Credits: https://huggingface.co/spaces/dhairyashah/deepfake-alpha-version/blob/main/CREDITS.md
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@spaces.GPU
def process_frame(frame):
    face = mtcnn(frame)
    if face is None:
        return None, None

    face = face.unsqueeze(0)
    face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)

    face = face.to(DEVICE)
    face = face.to(torch.float32)
    face = face / 255.0

    with torch.no_grad():
        output = torch.sigmoid(model(face).squeeze(0))
        prediction = "fake" if output.item() >= 0.5 else "real"

    return prediction, output.item()

@spaces.GPU
def analyze_video(video_path, sample_rate=30):
    cap = cv2.VideoCapture(video_path)
    frame_count = 0
    fake_count = 0
    total_processed = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        if frame_count % sample_rate == 0:
            rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            prediction, confidence = process_frame(rgb_frame)

            if prediction is not None:
                total_processed += 1
                if prediction == "fake":
                    fake_count += 1

        frame_count += 1

    cap.release()

    if total_processed > 0:
        fake_percentage = (fake_count / total_processed) * 100
        return fake_percentage
    else:
        return 0

@app.route('/analyze', methods=['POST'])
def analyze_video_api():
    if 'video' not in request.files:
        return jsonify({'error': 'No video file provided'}), 400

    file = request.files['video']

    if file.filename == '':
        return jsonify({'error': 'No selected file'}), 400

    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)

        try:
            fake_percentage = analyze_video(filepath)
            os.remove(filepath)  # Remove the file after analysis

            result = {
                'fake_percentage': round(fake_percentage, 2),
                'is_likely_deepfake': fake_percentage >= 60
            }

            return jsonify(result), 200
        except Exception as e:
            os.remove(filepath)  # Remove the file if an error occurs
            return jsonify({'error': str(e)}), 500
    else:
        return jsonify({'error': f'Invalid file type: {file.filename}'}), 400

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)