File size: 4,256 Bytes
6b9fa54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import random
from PIL import Image, ImageEnhance
import numpy as np
import cv2


def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image = np.array(image) / 255.0
    mask = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
    image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
    return image_masked


def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(
        image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]


def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]

    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)

    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * \
        (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    F = np.clip(F, 0, 1)
    return F, blurred_B


def preproc(image, label, preproc_methods=['flip']):
    if 'flip' in preproc_methods:
        image, label = cv_random_flip(image, label)
    if 'crop' in preproc_methods:
        image, label = random_crop(image, label)
    if 'rotate' in preproc_methods:
        image, label = random_rotate(image, label)
    if 'enhance' in preproc_methods:
        image = color_enhance(image)
    if 'pepper' in preproc_methods:
        image = random_pepper(image)
    return image, label


def cv_random_flip(img, label):
    if random.random() > 0.5:
        img = img.transpose(Image.FLIP_LEFT_RIGHT)
        label = label.transpose(Image.FLIP_LEFT_RIGHT)
    return img, label


def random_crop(image, label):
    border = 30
    image_width = image.size[0]
    image_height = image.size[1]
    border = int(min(image_width, image_height) * 0.1)
    crop_win_width = np.random.randint(image_width - border, image_width)
    crop_win_height = np.random.randint(image_height - border, image_height)
    random_region = (
        (image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
        (image_height + crop_win_height) >> 1)
    return image.crop(random_region), label.crop(random_region)


def random_rotate(image, label, angle=15):
    mode = Image.BICUBIC
    if random.random() > 0.8:
        random_angle = np.random.randint(-angle, angle)
        image = image.rotate(random_angle, mode)
        label = label.rotate(random_angle, mode)
    return image, label


def color_enhance(image):
    bright_intensity = random.randint(5, 15) / 10.0
    image = ImageEnhance.Brightness(image).enhance(bright_intensity)
    contrast_intensity = random.randint(5, 15) / 10.0
    image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
    color_intensity = random.randint(0, 20) / 10.0
    image = ImageEnhance.Color(image).enhance(color_intensity)
    sharp_intensity = random.randint(0, 30) / 10.0
    image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
    return image


def random_gaussian(image, mean=0.1, sigma=0.35):
    def gaussianNoisy(im, mean=mean, sigma=sigma):
        for _i in range(len(im)):
            im[_i] += random.gauss(mean, sigma)
        return im

    img = np.asarray(image)
    width, height = img.shape
    img = gaussianNoisy(img[:].flatten(), mean, sigma)
    img = img.reshape([width, height])
    return Image.fromarray(np.uint8(img))


def random_pepper(img, N=0.0015):
    img = np.array(img)
    noiseNum = int(N * img.shape[0] * img.shape[1])
    for i in range(noiseNum):
        randX = random.randint(0, img.shape[0] - 1)
        randY = random.randint(0, img.shape[1] - 1)
        img[randX, randY] = random.randint(0, 1) * 255
    return Image.fromarray(img)