Spaces:
Sleeping
Sleeping
import os | |
import math | |
class Config(): | |
def __init__(self) -> None: | |
# PATH settings | |
# Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx | |
if os.name == 'nt': | |
self.sys_home_dir = os.environ['USERPROFILE'] # For windows system | |
else: | |
self.sys_home_dir = [os.environ['HOME'], '/mnt/data'][1] # For Linux system | |
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis') | |
# TASK settings | |
self.task = ['DIS5K', 'COD', 'HRSOD', 'General', 'General-2K', 'Matting'][0] | |
# self.training_set = { | |
# 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0], | |
# 'COD': 'TR-COD10K+TR-CAMO', | |
# 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5], | |
# 'General': '+'.join([ds for ds in os.listdir(os.path.join(self.data_root_dir, self.task)) if ds not in ['DIS-VD']]), # leave DIS-VD for evaluation. | |
# 'General-2K': '+'.join([ds for ds in os.listdir(os.path.join(self.data_root_dir, self.task)) if ds not in ['DIS-VD', 'DIS-VD-ori']]), | |
# 'Matting': 'TR-P3M-10k+TE-P3M-500-NP+TR-humans+TR-Distrinctions-646', | |
# }[self.task] | |
self.prompt4loc = ['dense', 'sparse'][0] | |
# Faster-Training settings | |
self.load_all = False # Turn it on/off by your case. It may consume a lot of CPU memory. And for multi-GPU (N), it would cost N times the CPU memory to load the data. | |
self.use_fp16 = False # It may cause nan in training. | |
self.compile = True and (not self.use_fp16) # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch. | |
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting. | |
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607. | |
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training. | |
self.precisionHigh = True | |
# MODEL settings | |
self.ms_supervision = True | |
self.out_ref = self.ms_supervision and True | |
self.dec_ipt = True | |
self.dec_ipt_split = True | |
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder | |
self.mul_scl_ipt = ['', 'add', 'cat'][2] | |
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2] | |
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1] | |
self.dec_blk = ['BasicDecBlk', 'ResBlk'][0] | |
# TRAINING settings | |
self.batch_size = 4 | |
self.finetune_last_epochs = [ | |
0, | |
{ | |
'DIS5K': -40, | |
'COD': -20, | |
'HRSOD': -20, | |
'General': -20, | |
'General-2K': -20, | |
'Matting': -20, | |
}[self.task] | |
][1] # choose 0 to skip | |
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly | |
self.size = (1024, 1024) if self.task not in ['General-2K'] else (2560, 1440) # wid, hei | |
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader | |
# Backbone settings | |
self.bb = [ | |
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2 | |
'swin_v1_t', 'swin_v1_s', # 3, 4 | |
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4 | |
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8 | |
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5 | |
][6] | |
self.lateral_channels_in_collection = { | |
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], | |
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], | |
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], | |
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96], | |
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64], | |
}[self.bb] | |
if self.mul_scl_ipt == 'cat': | |
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection] | |
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else [] | |
# MODEL settings - inactive | |
self.lat_blk = ['BasicLatBlk'][0] | |
self.dec_channels_inter = ['fixed', 'adap'][0] | |
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0] | |
self.progressive_ref = self.refine and True | |
self.ender = self.progressive_ref and False | |
self.scale = self.progressive_ref and 2 | |
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`. | |
self.refine_iteration = 1 | |
self.freeze_bb = False | |
self.model = [ | |
'BiRefNet', | |
][0] | |
# TRAINING settings - inactive | |
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4] | |
self.optimizer = ['Adam', 'AdamW'][1] | |
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch. | |
self.lr_decay_rate = 0.5 | |
# Loss | |
if self.task not in ['Matting']: | |
self.lambdas_pix_last = { | |
# not 0 means opening this loss | |
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30 | |
'bce': 30 * 1, # high performance | |
'iou': 0.5 * 1, # 0 / 255 | |
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64) | |
'mae': 30 * 0, | |
'mse': 30 * 0, # can smooth the saliency map | |
'triplet': 3 * 0, | |
'reg': 100 * 0, | |
'ssim': 10 * 1, # help contours, | |
'cnt': 5 * 0, # help contours | |
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4. | |
} | |
else: | |
self.lambdas_pix_last = { | |
# not 0 means opening this loss | |
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30 | |
'bce': 30 * 0, # high performance | |
'iou': 0.5 * 0, # 0 / 255 | |
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64) | |
'mae': 100 * 1, | |
'mse': 30 * 0, # can smooth the saliency map | |
'triplet': 3 * 0, | |
'reg': 100 * 0, | |
'ssim': 10 * 1, # help contours, | |
'cnt': 5 * 0, # help contours | |
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4. | |
} | |
self.lambdas_cls = { | |
'ce': 5.0 | |
} | |
# Adv | |
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training | |
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0) | |
# PATH settings - inactive | |
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights/cv') | |
self.weights = { | |
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'), | |
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]), | |
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]), | |
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]), | |
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]), | |
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]), | |
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]), | |
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]), | |
} | |
# Callbacks - inactive | |
self.verbose_eval = True | |
self.only_S_MAE = False | |
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs | |
# others | |
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0') | |
self.batch_size_valid = 1 | |
self.rand_seed = 7 | |
run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f] | |
if run_sh_file: | |
with open(run_sh_file[0], 'r') as f: | |
lines = f.readlines() | |
self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0]) | |
self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0]) | |
def print_task(self) -> None: | |
# Return task for choosing settings in shell scripts. | |
print(self.task) | |
if __name__ == '__main__': | |
config = Config() | |
config.print_task() | |