Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision.models import vgg16, vgg16_bn | |
from torchvision.models import resnet50 | |
from models.config import Config | |
from models.dataset import class_labels_TR_sorted | |
from models.backbones.build_backbone import build_backbone | |
from models.modules.decoder_blocks import BasicDecBlk | |
from models.modules.lateral_blocks import BasicLatBlk | |
from models.refinement.stem_layer import StemLayer | |
class RefinerPVTInChannels4(nn.Module): | |
def __init__(self, in_channels=3+1): | |
super(RefinerPVTInChannels4, self).__init__() | |
self.config = Config() | |
self.epoch = 1 | |
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4') | |
lateral_channels_in_collection = { | |
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], | |
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], | |
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], | |
} | |
channels = lateral_channels_in_collection[self.config.bb] | |
self.squeeze_module = BasicDecBlk(channels[0], channels[0]) | |
self.decoder = Decoder(channels) | |
if 0: | |
for key, value in self.named_parameters(): | |
if 'bb.' in key: | |
value.requires_grad = False | |
def forward(self, x): | |
if isinstance(x, list): | |
x = torch.cat(x, dim=1) | |
########## Encoder ########## | |
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: | |
x1 = self.bb.conv1(x) | |
x2 = self.bb.conv2(x1) | |
x3 = self.bb.conv3(x2) | |
x4 = self.bb.conv4(x3) | |
else: | |
x1, x2, x3, x4 = self.bb(x) | |
x4 = self.squeeze_module(x4) | |
########## Decoder ########## | |
features = [x, x1, x2, x3, x4] | |
scaled_preds = self.decoder(features) | |
return scaled_preds | |
class Refiner(nn.Module): | |
def __init__(self, in_channels=3+1): | |
super(Refiner, self).__init__() | |
self.config = Config() | |
self.epoch = 1 | |
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN') | |
self.bb = build_backbone(self.config.bb) | |
lateral_channels_in_collection = { | |
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], | |
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], | |
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], | |
} | |
channels = lateral_channels_in_collection[self.config.bb] | |
self.squeeze_module = BasicDecBlk(channels[0], channels[0]) | |
self.decoder = Decoder(channels) | |
if 0: | |
for key, value in self.named_parameters(): | |
if 'bb.' in key: | |
value.requires_grad = False | |
def forward(self, x): | |
if isinstance(x, list): | |
x = torch.cat(x, dim=1) | |
x = self.stem_layer(x) | |
########## Encoder ########## | |
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: | |
x1 = self.bb.conv1(x) | |
x2 = self.bb.conv2(x1) | |
x3 = self.bb.conv3(x2) | |
x4 = self.bb.conv4(x3) | |
else: | |
x1, x2, x3, x4 = self.bb(x) | |
x4 = self.squeeze_module(x4) | |
########## Decoder ########## | |
features = [x, x1, x2, x3, x4] | |
scaled_preds = self.decoder(features) | |
return scaled_preds | |
class Decoder(nn.Module): | |
def __init__(self, channels): | |
super(Decoder, self).__init__() | |
self.config = Config() | |
DecoderBlock = eval('BasicDecBlk') | |
LateralBlock = eval('BasicLatBlk') | |
self.decoder_block4 = DecoderBlock(channels[0], channels[1]) | |
self.decoder_block3 = DecoderBlock(channels[1], channels[2]) | |
self.decoder_block2 = DecoderBlock(channels[2], channels[3]) | |
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2) | |
self.lateral_block4 = LateralBlock(channels[1], channels[1]) | |
self.lateral_block3 = LateralBlock(channels[2], channels[2]) | |
self.lateral_block2 = LateralBlock(channels[3], channels[3]) | |
if self.config.ms_supervision: | |
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) | |
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) | |
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) | |
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0)) | |
def forward(self, features): | |
x, x1, x2, x3, x4 = features | |
outs = [] | |
p4 = self.decoder_block4(x4) | |
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True) | |
_p3 = _p4 + self.lateral_block4(x3) | |
p3 = self.decoder_block3(_p3) | |
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
_p2 = _p3 + self.lateral_block3(x2) | |
p2 = self.decoder_block2(_p2) | |
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True) | |
_p1 = _p2 + self.lateral_block2(x1) | |
_p1 = self.decoder_block1(_p1) | |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True) | |
p1_out = self.conv_out1(_p1) | |
if self.config.ms_supervision: | |
outs.append(self.conv_ms_spvn_4(p4)) | |
outs.append(self.conv_ms_spvn_3(p3)) | |
outs.append(self.conv_ms_spvn_2(p2)) | |
outs.append(p1_out) | |
return outs | |
class RefUNet(nn.Module): | |
# Refinement | |
def __init__(self, in_channels=3+1): | |
super(RefUNet, self).__init__() | |
self.encoder_1 = nn.Sequential( | |
nn.Conv2d(in_channels, 64, 3, 1, 1), | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.encoder_2 = nn.Sequential( | |
nn.MaxPool2d(2, 2, ceil_mode=True), | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.encoder_3 = nn.Sequential( | |
nn.MaxPool2d(2, 2, ceil_mode=True), | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.encoder_4 = nn.Sequential( | |
nn.MaxPool2d(2, 2, ceil_mode=True), | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) | |
##### | |
self.decoder_5 = nn.Sequential( | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
##### | |
self.decoder_4 = nn.Sequential( | |
nn.Conv2d(128, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.decoder_3 = nn.Sequential( | |
nn.Conv2d(128, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.decoder_2 = nn.Sequential( | |
nn.Conv2d(128, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.decoder_1 = nn.Sequential( | |
nn.Conv2d(128, 64, 3, 1, 1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True) | |
) | |
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1) | |
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
def forward(self, x): | |
outs = [] | |
if isinstance(x, list): | |
x = torch.cat(x, dim=1) | |
hx = x | |
hx1 = self.encoder_1(hx) | |
hx2 = self.encoder_2(hx1) | |
hx3 = self.encoder_3(hx2) | |
hx4 = self.encoder_4(hx3) | |
hx = self.decoder_5(self.pool4(hx4)) | |
hx = torch.cat((self.upscore2(hx), hx4), 1) | |
d4 = self.decoder_4(hx) | |
hx = torch.cat((self.upscore2(d4), hx3), 1) | |
d3 = self.decoder_3(hx) | |
hx = torch.cat((self.upscore2(d3), hx2), 1) | |
d2 = self.decoder_2(hx) | |
hx = torch.cat((self.upscore2(d2), hx1), 1) | |
d1 = self.decoder_1(hx) | |
x = self.conv_d0(d1) | |
outs.append(x) | |
return outs | |