Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- predict_database.py +13 -0
- segment_key.py +344 -0
- test.py +82 -0
predict_database.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from segment_key import final_features
|
4 |
+
|
5 |
+
image_dir = '../augmentation/testing/3'
|
6 |
+
|
7 |
+
for filename in os.listdir(image_dir):
|
8 |
+
if filename.endswith('.jpg'):
|
9 |
+
image_path = os.path.join(image_dir, filename)
|
10 |
+
features = final_features(image_path)
|
11 |
+
with open('./prediction/database.txt', 'a+') as f:
|
12 |
+
f.write(filename + ';' + str(features) + '\n')
|
13 |
+
print('successfully predicted ' + filename)
|
segment_key.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import imutils
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from ultralytics import YOLO
|
8 |
+
|
9 |
+
from models.birefnet import BiRefNet
|
10 |
+
from util.utils import check_state_dict
|
11 |
+
from PIL import Image
|
12 |
+
import torch
|
13 |
+
from torchvision import transforms
|
14 |
+
from openvino.runtime import Core
|
15 |
+
|
16 |
+
model = BiRefNet(bb_pretrained=False)
|
17 |
+
state_dict = torch.load('models/weights/BiRefNet-general-epoch_244.pth', map_location='cpu')
|
18 |
+
state_dict = check_state_dict(state_dict)
|
19 |
+
model.load_state_dict(state_dict)
|
20 |
+
|
21 |
+
# Input Data
|
22 |
+
transform_image = transforms.Compose([
|
23 |
+
transforms.Resize((1024, 1024)),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
26 |
+
])
|
27 |
+
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
import torchvision.transforms as transforms
|
31 |
+
|
32 |
+
|
33 |
+
def export_to_onnx(model, dummy_input, onnx_path='model.onnx'):
|
34 |
+
# Export the PyTorch model to ONNX format
|
35 |
+
torch.onnx.export(model, dummy_input, onnx_path, verbose=True, input_names=['input'], output_names=['output'])
|
36 |
+
|
37 |
+
|
38 |
+
image = Image.open('./examples/img.jpg')
|
39 |
+
dummy_input = torch.randn(1, 3, 224, 224) # Adjust input size to match your model
|
40 |
+
export_to_onnx(model, image)
|
41 |
+
|
42 |
+
|
43 |
+
def pred_segmentation(image, box=[-1, -1, -1, -1]):
|
44 |
+
core = Core()
|
45 |
+
model_path = 'model_ir/model.xml'
|
46 |
+
compiled_model = core.compile_model(model_path, device_name='GPU') # Use "GPU" to target Intel GPU
|
47 |
+
print('predicting segmentation...')
|
48 |
+
|
49 |
+
# box: left, top, right, bottom
|
50 |
+
w, h = image.size[:2]
|
51 |
+
|
52 |
+
# Adjust box coordinates if necessary
|
53 |
+
for idx_coord_value, coord_value in enumerate(box):
|
54 |
+
if coord_value == -1:
|
55 |
+
box[idx_coord_value] = [0, 0, w, h][idx_coord_value]
|
56 |
+
|
57 |
+
# Crop the image based on the box
|
58 |
+
image_crop = image.crop(box)
|
59 |
+
|
60 |
+
# Transform the image
|
61 |
+
input_image = transform_image(image_crop)
|
62 |
+
input_image = np.expand_dims(input_image, axis=0) # Add batch dimension
|
63 |
+
|
64 |
+
# Run inference
|
65 |
+
infer_request = compiled_model.create_infer_request()
|
66 |
+
result = infer_request.infer(inputs={'input': input_image})
|
67 |
+
|
68 |
+
pred = result['output'][0] # Adjust if output name is different
|
69 |
+
|
70 |
+
# Post-process predictions
|
71 |
+
canvas = np.zeros_like(pred)
|
72 |
+
|
73 |
+
# Calculate the bounding box to place the result back on the canvas
|
74 |
+
box_to_canvas = [
|
75 |
+
int(round(coord_value * (canvas.shape[-1] / w, canvas.shape[-2] / h)[idx_coord_value % 2]))
|
76 |
+
for idx_coord_value, coord_value in enumerate(box)
|
77 |
+
]
|
78 |
+
|
79 |
+
pred = np.resize(pred, (box_to_canvas[3] - box_to_canvas[1], box_to_canvas[2] - box_to_canvas[0]))
|
80 |
+
|
81 |
+
canvas[box_to_canvas[1]:box_to_canvas[3], box_to_canvas[0]:box_to_canvas[2]] = pred
|
82 |
+
|
83 |
+
# Convert the canvas to PIL image for visualization
|
84 |
+
pred_pil = Image.fromarray((canvas * 255).astype(np.uint8)) # Rescale to [0, 255] for visualization
|
85 |
+
|
86 |
+
return pred_pil
|
87 |
+
|
88 |
+
|
89 |
+
def pred_bbox(image_path):
|
90 |
+
print('predicting bounding box...')
|
91 |
+
image = cv2.imread(image_path)
|
92 |
+
model = YOLO('models/weights/yolo_finetuned.pt')
|
93 |
+
|
94 |
+
# Perform prediction
|
95 |
+
results = model(image)
|
96 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()[0]
|
97 |
+
|
98 |
+
# Extract the bounding box coordinates
|
99 |
+
x1, y1, x2, y2 = map(int, list(boxes))
|
100 |
+
return [x1, y1, x2, y2]
|
101 |
+
|
102 |
+
|
103 |
+
def get_kps_from_pil(pil_image):
|
104 |
+
print('converting keypoints...')
|
105 |
+
image_array = np.array(pil_image)
|
106 |
+
|
107 |
+
# Find contours using OpenCV
|
108 |
+
contours, _ = cv2.findContours(image_array, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
109 |
+
|
110 |
+
# Find the largest contour by area
|
111 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
112 |
+
largest_contour = np.array(largest_contour)
|
113 |
+
contour = []
|
114 |
+
for i in range(len(largest_contour)):
|
115 |
+
contour.append(largest_contour[i][0])
|
116 |
+
scaler = MinMaxScaler()
|
117 |
+
kps = scaler.fit_transform(contour)
|
118 |
+
kps = np.array(kps)
|
119 |
+
kps = kps * 299
|
120 |
+
kps = np.int32(kps)
|
121 |
+
return kps
|
122 |
+
|
123 |
+
|
124 |
+
def get_features_up(contour):
|
125 |
+
feature = []
|
126 |
+
for i in range(0, 300):
|
127 |
+
position = 0
|
128 |
+
unsorted_features = []
|
129 |
+
for j in range(len(contour)):
|
130 |
+
point = contour[j]
|
131 |
+
prev_point = point
|
132 |
+
if j != 0:
|
133 |
+
prev_point = contour[j - 1]
|
134 |
+
if point[0] > i and position == 0:
|
135 |
+
position = 1
|
136 |
+
elif point[0] < i and position == 0:
|
137 |
+
position = -1
|
138 |
+
elif point[0] > i and position == -1:
|
139 |
+
unsorted_features.append((point[1] + prev_point[1]) // 2)
|
140 |
+
position = 1
|
141 |
+
elif point[0] < i and position == 1:
|
142 |
+
position = -1
|
143 |
+
unsorted_features.append((point[1] + prev_point[1]) // 2)
|
144 |
+
elif point[0] == i and position == 1:
|
145 |
+
unsorted_features.append(point[1])
|
146 |
+
position = -1
|
147 |
+
elif point[0] == i and position == -1:
|
148 |
+
unsorted_features.append(point[1])
|
149 |
+
position = 1
|
150 |
+
elif point[0] == i and position == 0:
|
151 |
+
position = 1
|
152 |
+
|
153 |
+
if len(unsorted_features) != 0:
|
154 |
+
if len(unsorted_features) == 1:
|
155 |
+
unsorted_features.append((contour[0][1] + contour[-1][1]) // 2)
|
156 |
+
unsorted_features.sort()
|
157 |
+
feature.append(max(unsorted_features))
|
158 |
+
else:
|
159 |
+
feature.append(-1)
|
160 |
+
|
161 |
+
return feature
|
162 |
+
|
163 |
+
|
164 |
+
def get_features_down(contour):
|
165 |
+
feature = []
|
166 |
+
for i in range(0, 300):
|
167 |
+
position = 0
|
168 |
+
unsorted_features = []
|
169 |
+
for j in range(len(contour)):
|
170 |
+
point = contour[j]
|
171 |
+
prev_point = point
|
172 |
+
if j != 0:
|
173 |
+
prev_point = contour[j - 1]
|
174 |
+
if point[0] > i and position == 0:
|
175 |
+
position = 1
|
176 |
+
elif point[0] < i and position == 0:
|
177 |
+
position = -1
|
178 |
+
elif point[0] > i and position == -1:
|
179 |
+
unsorted_features.append((point[1] + prev_point[1]) // 2)
|
180 |
+
position = 1
|
181 |
+
elif point[0] < i and position == 1:
|
182 |
+
position = -1
|
183 |
+
unsorted_features.append((point[1] + prev_point[1]) // 2)
|
184 |
+
elif point[0] == i and position == 1:
|
185 |
+
unsorted_features.append(point[1])
|
186 |
+
position = -1
|
187 |
+
elif point[0] == i and position == -1:
|
188 |
+
unsorted_features.append(point[1])
|
189 |
+
position = 1
|
190 |
+
elif point[0] == i and position == 0:
|
191 |
+
position = 1
|
192 |
+
|
193 |
+
if len(unsorted_features) != 0:
|
194 |
+
if len(unsorted_features) == 1:
|
195 |
+
unsorted_features.append((contour[0][1] + contour[-1][1]) // 2)
|
196 |
+
unsorted_features.sort()
|
197 |
+
feature.append(min(unsorted_features))
|
198 |
+
else:
|
199 |
+
feature.append(-1)
|
200 |
+
|
201 |
+
return feature
|
202 |
+
|
203 |
+
|
204 |
+
def get_features_right(contour):
|
205 |
+
feature = []
|
206 |
+
for i in range(0, 300):
|
207 |
+
position = 0
|
208 |
+
unsorted_features = []
|
209 |
+
for j in range(len(contour)):
|
210 |
+
point = contour[j]
|
211 |
+
prev_point = point
|
212 |
+
if j != 0:
|
213 |
+
prev_point = contour[j - 1]
|
214 |
+
if point[1] > i and position == 0:
|
215 |
+
position = 1
|
216 |
+
elif point[1] < i and position == 0:
|
217 |
+
position = -1
|
218 |
+
elif point[1] > i and position == -1:
|
219 |
+
unsorted_features.append((point[0] + prev_point[0]) // 2)
|
220 |
+
position = 1
|
221 |
+
elif point[1] < i and position == 1:
|
222 |
+
position = -1
|
223 |
+
unsorted_features.append((point[0] + prev_point[0]) // 2)
|
224 |
+
elif point[1] == i and position == 1:
|
225 |
+
unsorted_features.append(point[0])
|
226 |
+
position = -1
|
227 |
+
elif point[1] == i and position == -1:
|
228 |
+
unsorted_features.append(point[0])
|
229 |
+
position = 1
|
230 |
+
elif point[1] == i and position == 0:
|
231 |
+
position = 1
|
232 |
+
|
233 |
+
if len(unsorted_features) != 0:
|
234 |
+
if len(unsorted_features) == 1:
|
235 |
+
unsorted_features.append((contour[0][0] + contour[-1][0]) // 2)
|
236 |
+
unsorted_features.sort()
|
237 |
+
feature.append(min(unsorted_features))
|
238 |
+
else:
|
239 |
+
feature.append(-1)
|
240 |
+
|
241 |
+
return feature
|
242 |
+
|
243 |
+
|
244 |
+
def get_features_left(contour):
|
245 |
+
feature = []
|
246 |
+
for i in range(0, 300):
|
247 |
+
position = 0
|
248 |
+
unsorted_features = []
|
249 |
+
for j in range(len(contour)):
|
250 |
+
point = contour[j]
|
251 |
+
prev_point = point
|
252 |
+
if j != 0:
|
253 |
+
prev_point = contour[j - 1]
|
254 |
+
if point[1] > i and position == 0:
|
255 |
+
position = 1
|
256 |
+
elif point[1] < i and position == 0:
|
257 |
+
position = -1
|
258 |
+
elif point[1] > i and position == -1:
|
259 |
+
unsorted_features.append((point[0] + prev_point[0]) // 2)
|
260 |
+
position = 1
|
261 |
+
elif point[1] < i and position == 1:
|
262 |
+
position = -1
|
263 |
+
unsorted_features.append((point[0] + prev_point[0]) // 2)
|
264 |
+
elif point[1] == i and position == 1:
|
265 |
+
unsorted_features.append(point[0])
|
266 |
+
position = -1
|
267 |
+
elif point[1] == i and position == -1:
|
268 |
+
unsorted_features.append(point[0])
|
269 |
+
position = 1
|
270 |
+
elif point[1] == i and position == 0:
|
271 |
+
position = 1
|
272 |
+
|
273 |
+
if len(unsorted_features) != 0:
|
274 |
+
if len(unsorted_features) == 1:
|
275 |
+
unsorted_features.append((contour[0][0] + contour[-1][0]) // 2)
|
276 |
+
unsorted_features.sort()
|
277 |
+
feature.append(max(unsorted_features))
|
278 |
+
else:
|
279 |
+
feature.append(-1)
|
280 |
+
|
281 |
+
return feature
|
282 |
+
|
283 |
+
|
284 |
+
def extract_features(contour):
|
285 |
+
print('extracting features...')
|
286 |
+
return get_features_down(contour) + get_features_up(contour) + get_features_right(contour) + get_features_left(contour)
|
287 |
+
|
288 |
+
|
289 |
+
def final_features(image_path):
|
290 |
+
image = Image.open(image_path)
|
291 |
+
image = rotate_image(image)
|
292 |
+
pil_image = pred_segmentation(image, pred_bbox(image_path))
|
293 |
+
contour = get_kps_from_pil(pil_image)
|
294 |
+
return extract_features(contour)
|
295 |
+
|
296 |
+
|
297 |
+
def predict_kps(image):
|
298 |
+
model = YOLO('models/weights/yolo_finetuned.pt')
|
299 |
+
# Perform prediction
|
300 |
+
results = model(image)
|
301 |
+
kps = results[0].masks.xy[0]
|
302 |
+
return kps
|
303 |
+
|
304 |
+
|
305 |
+
def calculate_angle(p1, p2):
|
306 |
+
delta_y = p2[1] - p1[1]
|
307 |
+
delta_x = p2[0] - p1[0]
|
308 |
+
return math.degrees(np.arctan2(delta_y, delta_x))
|
309 |
+
|
310 |
+
|
311 |
+
# Function to rotate points by a given angle
|
312 |
+
def calculate_square(img):
|
313 |
+
np_image = np.array(img)
|
314 |
+
# Convert RGB (PIL) to BGR (OpenCV)
|
315 |
+
if np_image.ndim == 3: # Check if the image is colored
|
316 |
+
cv_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
317 |
+
else:
|
318 |
+
# For grayscale images, no conversion is needed
|
319 |
+
cv_image = np_image
|
320 |
+
|
321 |
+
rect = cv2.minAreaRect(predict_kps(cv_image))
|
322 |
+
box = cv2.boxPoints(rect)
|
323 |
+
box = np.int32(box)
|
324 |
+
return box
|
325 |
+
|
326 |
+
|
327 |
+
def rotate_image(image):
|
328 |
+
square = calculate_square(image)
|
329 |
+
# Calculate the lengths of the sides
|
330 |
+
side_lengths = [np.linalg.norm(square[i] - square[i + 1]) for i in range(len(square) - 1)]
|
331 |
+
|
332 |
+
# Find the indices of the larger side
|
333 |
+
max_index = np.argmax(side_lengths)
|
334 |
+
|
335 |
+
# Find the two points that form the largest side
|
336 |
+
p1, p2 = square[max_index], square[max_index + 1]
|
337 |
+
|
338 |
+
# Calculate the angle between this side and the horizontal axis
|
339 |
+
angle = calculate_angle(p1, p2)
|
340 |
+
|
341 |
+
# Rotate the square to align the largest side with the horizontal axis
|
342 |
+
rotated_image = image.rotate(angle)
|
343 |
+
|
344 |
+
return rotated_image
|
test.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from ast import literal_eval
|
3 |
+
|
4 |
+
from segment_key import *
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
|
7 |
+
|
8 |
+
def show_kps(contour):
|
9 |
+
list1 = range(0, 310)
|
10 |
+
list2 = list(zip(get_features_right(contour), list1))
|
11 |
+
|
12 |
+
x_coords = [point[0] for point in list2]
|
13 |
+
y_coords = [point[1] for point in list2]
|
14 |
+
plt.scatter(x_coords, y_coords, c='red', marker='o', label='Keypoints')
|
15 |
+
|
16 |
+
list2 = list(zip(get_features_left(contour), list1))
|
17 |
+
x_coords = [point[0] for point in list2]
|
18 |
+
y_coords = [point[1] for point in list2]
|
19 |
+
plt.scatter(x_coords, y_coords, c='red', marker='o', label='Keypoints')
|
20 |
+
|
21 |
+
list2 = list(zip(list1, get_features_up(contour)))
|
22 |
+
x_coords = [point[0] for point in list2]
|
23 |
+
y_coords = [point[1] for point in list2]
|
24 |
+
plt.scatter(x_coords, y_coords, c='red', marker='o', label='Keypoints')
|
25 |
+
|
26 |
+
list2 = list(zip(list1, get_features_down(contour)))
|
27 |
+
x_coords = [point[0] for point in list2]
|
28 |
+
y_coords = [point[1] for point in list2]
|
29 |
+
plt.scatter(x_coords, y_coords, c='red', marker='o', label='Keypoints')
|
30 |
+
|
31 |
+
plt.show()
|
32 |
+
|
33 |
+
|
34 |
+
def get_all_features():
|
35 |
+
contours = []
|
36 |
+
with open('prediction/database.txt', 'r') as file:
|
37 |
+
lines = file.readlines()
|
38 |
+
for line in lines:
|
39 |
+
results = (line.split(';')[1])
|
40 |
+
results = results.replace(",,", ",'',")
|
41 |
+
results = literal_eval(results)
|
42 |
+
results = np.array(results)
|
43 |
+
contours.append((line.split(';')[0], results))
|
44 |
+
|
45 |
+
return contours
|
46 |
+
|
47 |
+
|
48 |
+
def cos_similarity(feature1, feature2):
|
49 |
+
return np.dot(feature1, feature2) / (np.linalg.norm(feature1) * np.linalg.norm(feature2))
|
50 |
+
|
51 |
+
|
52 |
+
def predict_match(image_path):
|
53 |
+
main_name = os.path.basename(image_path)[:-11] + '.jpg'
|
54 |
+
main_feature = final_features(image_path)
|
55 |
+
contours = get_all_features()
|
56 |
+
|
57 |
+
l = []
|
58 |
+
|
59 |
+
for image in contours:
|
60 |
+
feature = image[1]
|
61 |
+
feature_similarity = 1 - cos_similarity(feature, main_feature)
|
62 |
+
|
63 |
+
l.append([image[0], feature_similarity])
|
64 |
+
|
65 |
+
l.sort(key=lambda x: x[1])
|
66 |
+
|
67 |
+
print(l)
|
68 |
+
print(l[0])
|
69 |
+
index_in_list = -1
|
70 |
+
for i in range(len(l)):
|
71 |
+
if l[i][0] == main_name:
|
72 |
+
index_in_list = i
|
73 |
+
return l[0][0], l[0][1], index_in_list
|
74 |
+
|
75 |
+
|
76 |
+
# for image_file in os.listdir('../augmentation/testing/3'):
|
77 |
+
# image_path = os.path.join('../augmentation/testing/3', image_file)
|
78 |
+
# best_image_name, best_match_value, index = predict_match(image_path)
|
79 |
+
# with open('performance/performance_results.txt', 'a+') as file:
|
80 |
+
# file.write(image_file + ';' + best_image_name + ';' + str(best_match_value) + ';' + str(index) + '\n')
|
81 |
+
|
82 |
+
predict_match('./examples/img.jpg')
|