Spaces:
Running
on
A10G
Running
on
A10G
patrickvonplaten
commited on
Commit
•
a00529a
1
Parent(s):
ae4902b
up
Browse files- README.md +1 -1
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +1 -7
- header.html +4 -8
- inpainting.py +0 -194
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🔥
|
4 |
colorFrom: green
|
5 |
colorTo: pink
|
|
|
1 |
---
|
2 |
+
title: SDXL Inpainting
|
3 |
emoji: 🔥
|
4 |
colorFrom: green
|
5 |
colorTo: pink
|
__pycache__/app.cpython-310.pyc
CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -98,15 +98,9 @@ with image_blocks as demo:
|
|
98 |
gr.HTML(
|
99 |
"""
|
100 |
<div class="footer">
|
101 |
-
<p>Model by <a href="https://huggingface.co/
|
102 |
</p>
|
103 |
</div>
|
104 |
-
<div class="acknowledgments">
|
105 |
-
<p><h4>LICENSE</h4>
|
106 |
-
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
|
107 |
-
<p><h4>Biases and content acknowledgment</h4>
|
108 |
-
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
|
109 |
-
</div>
|
110 |
"""
|
111 |
)
|
112 |
|
|
|
98 |
gr.HTML(
|
99 |
"""
|
100 |
<div class="footer">
|
101 |
+
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">RunwayML</a> - Gradio Demo by 🤗 Hugging Face
|
102 |
</p>
|
103 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
"""
|
105 |
)
|
106 |
|
header.html
CHANGED
@@ -8,17 +8,13 @@
|
|
8 |
">
|
9 |
<img
|
10 |
src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1665970599545-634cb15a4abe8405758d2e7e.jpeg"
|
11 |
-
alt="
|
12 |
<h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
|
13 |
-
|
14 |
</h1>
|
15 |
</div>
|
16 |
<div>
|
17 |
<p style="align-items: center; margin-bottom: 7px;">
|
18 |
-
Stable Diffusion Inpainting, add a mask and text prompt for what you want to replace
|
19 |
-
generation you can try
|
20 |
-
<a href="https://app.runwayml.com/video-tools/teams/akhaliq/ai-tools/erase-and-replace"
|
21 |
-
style="text-decoration: underline;" target="_blank">erase and replace tool on Runway</a>
|
22 |
-
</p>
|
23 |
</div>
|
24 |
-
</div>
|
|
|
8 |
">
|
9 |
<img
|
10 |
src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1665970599545-634cb15a4abe8405758d2e7e.jpeg"
|
11 |
+
alt="Diffusers" width="64px">
|
12 |
<h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
|
13 |
+
Stable Diffusion XL Inpainting 🎨
|
14 |
</h1>
|
15 |
</div>
|
16 |
<div>
|
17 |
<p style="align-items: center; margin-bottom: 7px;">
|
18 |
+
Stable Diffusion XL Inpainting, add a mask and text prompt for what you want to replace
|
|
|
|
|
|
|
|
|
19 |
</div>
|
20 |
+
</div>
|
inpainting.py
DELETED
@@ -1,194 +0,0 @@
|
|
1 |
-
import inspect
|
2 |
-
from typing import List, Optional, Union
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
|
7 |
-
import PIL
|
8 |
-
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, PNDMScheduler, UNet2DConditionModel
|
9 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
10 |
-
from tqdm.auto import tqdm
|
11 |
-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
12 |
-
|
13 |
-
|
14 |
-
def preprocess_image(image):
|
15 |
-
w, h = image.size
|
16 |
-
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
17 |
-
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
18 |
-
image = np.array(image).astype(np.float32) / 255.0
|
19 |
-
image = image[None].transpose(0, 3, 1, 2)
|
20 |
-
image = torch.from_numpy(image)
|
21 |
-
return 2.0 * image - 1.0
|
22 |
-
|
23 |
-
|
24 |
-
def preprocess_mask(mask):
|
25 |
-
mask = mask.convert("L")
|
26 |
-
w, h = mask.size
|
27 |
-
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
28 |
-
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
|
29 |
-
mask = np.array(mask).astype(np.float32) / 255.0
|
30 |
-
mask = np.tile(mask, (4, 1, 1))
|
31 |
-
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
32 |
-
mask = 1 - mask # repaint white, keep black
|
33 |
-
mask = torch.from_numpy(mask)
|
34 |
-
return mask
|
35 |
-
|
36 |
-
class StableDiffusionInpaintingPipeline(DiffusionPipeline):
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
vae: AutoencoderKL,
|
40 |
-
text_encoder: CLIPTextModel,
|
41 |
-
tokenizer: CLIPTokenizer,
|
42 |
-
unet: UNet2DConditionModel,
|
43 |
-
scheduler: Union[DDIMScheduler, PNDMScheduler],
|
44 |
-
safety_checker: StableDiffusionSafetyChecker,
|
45 |
-
feature_extractor: CLIPFeatureExtractor,
|
46 |
-
):
|
47 |
-
super().__init__()
|
48 |
-
scheduler = scheduler.set_format("pt")
|
49 |
-
self.register_modules(
|
50 |
-
vae=vae,
|
51 |
-
text_encoder=text_encoder,
|
52 |
-
tokenizer=tokenizer,
|
53 |
-
unet=unet,
|
54 |
-
scheduler=scheduler,
|
55 |
-
safety_checker=safety_checker,
|
56 |
-
feature_extractor=feature_extractor,
|
57 |
-
)
|
58 |
-
|
59 |
-
@torch.no_grad()
|
60 |
-
def __call__(
|
61 |
-
self,
|
62 |
-
prompt: Union[str, List[str]],
|
63 |
-
init_image: torch.FloatTensor,
|
64 |
-
mask_image: torch.FloatTensor,
|
65 |
-
strength: float = 0.8,
|
66 |
-
num_inference_steps: Optional[int] = 50,
|
67 |
-
guidance_scale: Optional[float] = 7.5,
|
68 |
-
eta: Optional[float] = 0.0,
|
69 |
-
generator: Optional[torch.Generator] = None,
|
70 |
-
output_type: Optional[str] = "pil",
|
71 |
-
):
|
72 |
-
|
73 |
-
if isinstance(prompt, str):
|
74 |
-
batch_size = 1
|
75 |
-
elif isinstance(prompt, list):
|
76 |
-
batch_size = len(prompt)
|
77 |
-
else:
|
78 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
79 |
-
|
80 |
-
if strength < 0 or strength > 1:
|
81 |
-
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
82 |
-
|
83 |
-
# set timesteps
|
84 |
-
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
85 |
-
extra_set_kwargs = {}
|
86 |
-
offset = 0
|
87 |
-
if accepts_offset:
|
88 |
-
offset = 1
|
89 |
-
extra_set_kwargs["offset"] = 1
|
90 |
-
|
91 |
-
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
92 |
-
|
93 |
-
# preprocess image
|
94 |
-
init_image = preprocess_image(init_image).to(self.device)
|
95 |
-
|
96 |
-
# encode the init image into latents and scale the latents
|
97 |
-
init_latent_dist = self.vae.encode(init_image).latent_dist
|
98 |
-
init_latents = init_latent_dist.sample(generator=generator)
|
99 |
-
init_latents = 0.18215 * init_latents
|
100 |
-
|
101 |
-
# prepare init_latents noise to latents
|
102 |
-
init_latents = torch.cat([init_latents] * batch_size)
|
103 |
-
init_latents_orig = init_latents
|
104 |
-
|
105 |
-
# preprocess mask
|
106 |
-
mask = preprocess_mask(mask_image).to(self.device)
|
107 |
-
mask = torch.cat([mask] * batch_size)
|
108 |
-
|
109 |
-
# check sizes
|
110 |
-
if not mask.shape == init_latents.shape:
|
111 |
-
raise ValueError(f"The mask and init_image should be the same size!")
|
112 |
-
|
113 |
-
# get the original timestep using init_timestep
|
114 |
-
init_timestep = int(num_inference_steps * strength) + offset
|
115 |
-
init_timestep = min(init_timestep, num_inference_steps)
|
116 |
-
timesteps = self.scheduler.timesteps[-init_timestep]
|
117 |
-
timesteps = torch.tensor([timesteps] * batch_size, dtype=torch.long, device=self.device)
|
118 |
-
|
119 |
-
# add noise to latents using the timesteps
|
120 |
-
noise = torch.randn(init_latents.shape, generator=generator, device=self.device)
|
121 |
-
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)
|
122 |
-
|
123 |
-
# get prompt text embeddings
|
124 |
-
text_input = self.tokenizer(
|
125 |
-
prompt,
|
126 |
-
padding="max_length",
|
127 |
-
max_length=self.tokenizer.model_max_length,
|
128 |
-
truncation=True,
|
129 |
-
return_tensors="pt",
|
130 |
-
)
|
131 |
-
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
132 |
-
|
133 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
134 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
135 |
-
# corresponds to doing no classifier free guidance.
|
136 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
137 |
-
# get unconditional embeddings for classifier free guidance
|
138 |
-
if do_classifier_free_guidance:
|
139 |
-
max_length = text_input.input_ids.shape[-1]
|
140 |
-
uncond_input = self.tokenizer(
|
141 |
-
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
142 |
-
)
|
143 |
-
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
144 |
-
|
145 |
-
# For classifier free guidance, we need to do two forward passes.
|
146 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
147 |
-
# to avoid doing two forward passes
|
148 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
149 |
-
|
150 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
151 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
152 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
153 |
-
# and should be between [0, 1]
|
154 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
155 |
-
extra_step_kwargs = {}
|
156 |
-
if accepts_eta:
|
157 |
-
extra_step_kwargs["eta"] = eta
|
158 |
-
|
159 |
-
latents = init_latents
|
160 |
-
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
161 |
-
for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])):
|
162 |
-
# expand the latents if we are doing classifier free guidance
|
163 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
164 |
-
|
165 |
-
# predict the noise residual
|
166 |
-
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
167 |
-
|
168 |
-
# perform guidance
|
169 |
-
if do_classifier_free_guidance:
|
170 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
171 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
172 |
-
|
173 |
-
# compute the previous noisy sample x_t -> x_t-1
|
174 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]
|
175 |
-
|
176 |
-
# masking
|
177 |
-
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
|
178 |
-
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
179 |
-
|
180 |
-
# scale and decode the image latents with vae
|
181 |
-
latents = 1 / 0.18215 * latents
|
182 |
-
image = self.vae.decode(latents).sample
|
183 |
-
|
184 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
185 |
-
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
186 |
-
|
187 |
-
# run safety checker
|
188 |
-
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
189 |
-
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
190 |
-
|
191 |
-
if output_type == "pil":
|
192 |
-
image = self.numpy_to_pil(image)
|
193 |
-
|
194 |
-
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|