Spaces:
Running
on
A10G
Running
on
A10G
title
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Unofficial SDXL Turbo
|
3 |
emoji: 🏆
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
|
|
1 |
---
|
2 |
+
title: Unofficial SDXL Turbo Img2Img Txt2Img
|
3 |
emoji: 🏆
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from diffusers import
|
2 |
import torch
|
3 |
import os
|
4 |
|
@@ -35,31 +35,79 @@ if mps_available:
|
|
35 |
torch_dtype = torch.float32
|
36 |
|
37 |
if SAFETY_CHECKER == "True":
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
else:
|
40 |
-
|
41 |
-
"stabilityai/sdxl-turbo",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
print(f"Pipe took {time.time() - last_time} seconds")
|
64 |
nsfw_content_detected = (
|
65 |
results.nsfw_content_detected[0]
|
@@ -75,7 +123,7 @@ def predict(prompt, steps, seed=1231231):
|
|
75 |
css = """
|
76 |
#container{
|
77 |
margin: 0 auto;
|
78 |
-
max-width:
|
79 |
}
|
80 |
#intro{
|
81 |
max-width: 100%;
|
@@ -84,9 +132,10 @@ css = """
|
|
84 |
}
|
85 |
"""
|
86 |
with gr.Blocks(css=css) as demo:
|
|
|
87 |
with gr.Column(elem_id="container"):
|
88 |
gr.Markdown(
|
89 |
-
"""# SDXL Turbo
|
90 |
## Unofficial Demo
|
91 |
SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo).
|
92 |
**Model**: https://huggingface.co/stabilityai/sdxl-turbo
|
@@ -94,18 +143,40 @@ with gr.Blocks(css=css) as demo:
|
|
94 |
elem_id="intro",
|
95 |
)
|
96 |
with gr.Row():
|
97 |
-
|
98 |
-
prompt
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
)
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
image = gr.Image(type="filepath")
|
104 |
-
with gr.Accordion("Advanced options", open=False):
|
105 |
-
steps = gr.Slider(label="Steps", value=2, minimum=1, maximum=10, step=1)
|
106 |
-
seed = gr.Slider(
|
107 |
-
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
108 |
-
)
|
109 |
with gr.Accordion("Run with diffusers"):
|
110 |
gr.Markdown(
|
111 |
"""## Running SDXL Turbo with `diffusers`
|
@@ -116,7 +187,7 @@ with gr.Blocks(css=css) as demo:
|
|
116 |
from diffusers import DiffusionPipeline
|
117 |
|
118 |
pipe = DiffusionPipeline.from_pretrained(
|
119 |
-
"stabilityai/sdxl-turbo"
|
120 |
).to("cuda")
|
121 |
results = pipe(
|
122 |
prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe",
|
@@ -129,11 +200,19 @@ with gr.Blocks(css=css) as demo:
|
|
129 |
"""
|
130 |
)
|
131 |
|
132 |
-
inputs = [prompt, steps, seed]
|
133 |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
134 |
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
135 |
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
136 |
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
demo.queue()
|
139 |
demo.launch()
|
|
|
1 |
+
from diffusers import AutoPipelineForImage2Image, AutoPipelineForText2Image
|
2 |
import torch
|
3 |
import os
|
4 |
|
|
|
35 |
torch_dtype = torch.float32
|
36 |
|
37 |
if SAFETY_CHECKER == "True":
|
38 |
+
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
|
39 |
+
"stabilityai/sdxl-turbo",
|
40 |
+
torch_dtype=torch_dtype,
|
41 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
42 |
+
)
|
43 |
+
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
44 |
+
"stabilityai/sdxl-turbo",
|
45 |
+
torch_dtype=torch_dtype,
|
46 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
47 |
+
)
|
48 |
else:
|
49 |
+
i2i_pipe = AutoPipelineForImage2Image.from_pretrained(
|
50 |
+
"stabilityai/sdxl-turbo",
|
51 |
+
safety_checker=None,
|
52 |
+
torch_dtype=torch_dtype,
|
53 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
54 |
+
)
|
55 |
+
t2i_pipe = AutoPipelineForText2Image.from_pretrained(
|
56 |
+
"stabilityai/sdxl-turbo",
|
57 |
+
safety_checker=None,
|
58 |
+
torch_dtype=torch_dtype,
|
59 |
+
variant="fp16" if torch_dtype == torch.float16 else "fp32",
|
60 |
)
|
61 |
|
62 |
|
63 |
+
t2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
64 |
+
t2i_pipe.set_progress_bar_config(disable=True)
|
65 |
+
i2i_pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
66 |
+
i2i_pipe.set_progress_bar_config(disable=True)
|
67 |
+
|
68 |
+
|
69 |
+
def pad_image(image):
|
70 |
+
w, h = image.size
|
71 |
+
if w == h:
|
72 |
+
return image
|
73 |
+
elif w > h:
|
74 |
+
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
|
75 |
+
new_image.paste(image, (0, (w - h) // 2))
|
76 |
+
return new_image
|
77 |
+
else:
|
78 |
+
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
|
79 |
+
new_image.paste(image, ((h - w) // 2, 0))
|
80 |
+
return new_image
|
81 |
+
|
82 |
+
|
83 |
+
async def predict(init_image, prompt, strength, steps, seed=1231231):
|
84 |
+
if init_image is not None:
|
85 |
+
init_image = pad_image(init_image).convert("RGB").resize((512, 512))
|
86 |
+
generator = torch.manual_seed(seed)
|
87 |
+
last_time = time.time()
|
88 |
+
results = i2i_pipe(
|
89 |
+
prompt=prompt,
|
90 |
+
image=init_image,
|
91 |
+
generator=generator,
|
92 |
+
num_inference_steps=steps,
|
93 |
+
guidance_scale=0.0,
|
94 |
+
strength=strength,
|
95 |
+
width=512,
|
96 |
+
height=512,
|
97 |
+
output_type="pil",
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
generator = torch.manual_seed(seed)
|
101 |
+
last_time = time.time()
|
102 |
+
results = t2i_pipe(
|
103 |
+
prompt=prompt,
|
104 |
+
generator=generator,
|
105 |
+
num_inference_steps=steps,
|
106 |
+
guidance_scale=0.0,
|
107 |
+
width=512,
|
108 |
+
height=512,
|
109 |
+
output_type="pil",
|
110 |
+
)
|
111 |
print(f"Pipe took {time.time() - last_time} seconds")
|
112 |
nsfw_content_detected = (
|
113 |
results.nsfw_content_detected[0]
|
|
|
123 |
css = """
|
124 |
#container{
|
125 |
margin: 0 auto;
|
126 |
+
max-width: 80rem;
|
127 |
}
|
128 |
#intro{
|
129 |
max-width: 100%;
|
|
|
132 |
}
|
133 |
"""
|
134 |
with gr.Blocks(css=css) as demo:
|
135 |
+
init_image_state = gr.State()
|
136 |
with gr.Column(elem_id="container"):
|
137 |
gr.Markdown(
|
138 |
+
"""# SDXL Turbo Image to Image/Text to Image
|
139 |
## Unofficial Demo
|
140 |
SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo).
|
141 |
**Model**: https://huggingface.co/stabilityai/sdxl-turbo
|
|
|
143 |
elem_id="intro",
|
144 |
)
|
145 |
with gr.Row():
|
146 |
+
prompt = gr.Textbox(
|
147 |
+
placeholder="Insert your prompt here:",
|
148 |
+
scale=5,
|
149 |
+
container=False,
|
150 |
+
)
|
151 |
+
generate_bt = gr.Button("Generate", scale=1)
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
image_input = gr.Image(
|
155 |
+
sources=["upload", "webcam", "clipboard"],
|
156 |
+
label="Webcam",
|
157 |
+
type="pil",
|
158 |
)
|
159 |
+
with gr.Column():
|
160 |
+
image = gr.Image(type="filepath")
|
161 |
+
with gr.Accordion("Advanced options", open=False):
|
162 |
+
strength = gr.Slider(
|
163 |
+
label="Strength",
|
164 |
+
value=0.7,
|
165 |
+
minimum=0.0,
|
166 |
+
maximum=1.0,
|
167 |
+
step=0.001,
|
168 |
+
)
|
169 |
+
steps = gr.Slider(
|
170 |
+
label="Steps", value=2, minimum=1, maximum=10, step=1
|
171 |
+
)
|
172 |
+
seed = gr.Slider(
|
173 |
+
randomize=True,
|
174 |
+
minimum=0,
|
175 |
+
maximum=12013012031030,
|
176 |
+
label="Seed",
|
177 |
+
step=1,
|
178 |
+
)
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
with gr.Accordion("Run with diffusers"):
|
181 |
gr.Markdown(
|
182 |
"""## Running SDXL Turbo with `diffusers`
|
|
|
187 |
from diffusers import DiffusionPipeline
|
188 |
|
189 |
pipe = DiffusionPipeline.from_pretrained(
|
190 |
+
"stabilityai/sdxl-turbo"
|
191 |
).to("cuda")
|
192 |
results = pipe(
|
193 |
prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe",
|
|
|
200 |
"""
|
201 |
)
|
202 |
|
203 |
+
inputs = [image_input, prompt, strength, steps, seed]
|
204 |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
205 |
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
206 |
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
207 |
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
208 |
+
strength.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
209 |
+
image_input.change(
|
210 |
+
fn=lambda x: x,
|
211 |
+
inputs=image_input,
|
212 |
+
outputs=init_image_state,
|
213 |
+
show_progress=False,
|
214 |
+
queue=False,
|
215 |
+
)
|
216 |
|
217 |
demo.queue()
|
218 |
demo.launch()
|