Spaces:
Sleeping
Sleeping
File size: 4,616 Bytes
d6a7d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import streamlit as st
import cv2
import numpy as np
import requests
from mmdet.apis import init_detector, inference_detector
import mmcv
import torch
from mmdet.utils.contextmanagers import concurrent
from pprint import pprint
from PIL import Image
import datetime
# Specify the path to model config and checkpoint file
config_file = 'configs/fasterrcnn.py'
checkpoint_file = 'models/fasterrcnn.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
img = 'demo2.png' # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
model.show_result(img, result)
# or save the visualization results to image files
model.show_result(img, result, out_file='result.jpg')
list_objects = []
for i in result[1]:
temp = i
temp = np.append(temp, 1)
list_objects.append(temp)
for i in result[2]:
temp = i
temp = np.append(temp, 2)
list_objects.append(temp)
for i in result[3]:
temp = i
temp = np.append(temp, 3)
list_objects.append(temp)
img = cv2.imread(img)
for i in list_objects:
if i[5] == 1:
color = (255, 0, 0)
text = "Mask weared incorrect"
elif i[5] == 2:
color = (0, 255, 0)
text = "With mask"
elif i[5] == 3:
color = (0, 0, 255)
text = "Without mask"
text += ": " + str(round(i[4], 2))
x1 = i[0]
y1 = i[1]
x2 = i[2] - 1
y2 = i[3] - 1
x1 = round(x1)
y1 = round(y1)
x2 = round(x2)
y2 = round(y2)
img = cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
img = cv2.putText(img, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.imwrite('Original_result.jpg', img)
def IoU(bbox1, bbox2):
x1_left = bbox1[0]
y1_top = bbox1[1]
x1_right = bbox1[2]
y1_bot = bbox1[3]
x2_left = bbox2[0]
y2_top = bbox2[1]
x2_right = bbox2[2]
y2_bot = bbox2[3]
x_left = max(x1_left, x2_left)
x_right = min(x1_right, x2_right)
y_top = max(y1_top, y2_top)
y_bot = min(y1_bot, y2_bot)
inter = (x_right - x_left) * (y_bot - y_top)
if x_right < x_left or y_bot < y_top:
return 0.0
area1 = (x1_right - x1_left) * (y1_bot - y1_top)
area2 = (x2_right - x2_left) * (y2_bot - y2_top)
union = area1 + area2 - inter
IoU = inter / union
return IoU
total_people = 0
incorrect = 0
withmask = 0
withoutmask = 0
list_objects = []
isRemove = []
for i in result[1]:
temp = i
temp = np.append(temp, 1)
list_objects.append(temp)
isRemove.append(0)
for i in result[2]:
temp = i
temp = np.append(temp, 2)
list_objects.append(temp)
isRemove.append(0)
for i in result[3]:
temp = i
temp = np.append(temp, 3)
list_objects.append(temp)
isRemove.append(0)
for i in range(len(list_objects) - 1):
for j in range(i + 1, len(list_objects)):
bbox1 = [list_objects[i][0], list_objects[i][1], list_objects[i][2], list_objects[i][3]]
bbox2 = [list_objects[j][0], list_objects[j][1], list_objects[j][2], list_objects[j][3]]
if abs(IoU(bbox1, bbox2)) > 0.7:
if list_objects[i][4] > list_objects[j][4]:
isRemove[j] = 1
else:
isRemove[i] = 1
# print("IoU", abs(IoU(bbox1, bbox2)))
if list_objects[i][4] < 0.4:
isRemove[i] = 1
if list_objects[j][4] < 0.4:
isRemove[j] = 1
selected_list = []
for i in range(len(list_objects)):
if isRemove[i] == 0:
selected_list.append(list_objects[i])
for i in selected_list:
if i[5] == 1:
incorrect += 1
elif i[5] == 2:
withmask += 1
elif i[5] ==3:
withoutmask += 1
total_people += incorrect + withmask + withoutmask
img = 'demo2.png' # or img = mmcv.imread(img), which will only load it once
img = cv2.imread(img)
for i in selected_list:
if i[5] == 1:
color = (255, 0, 0)
text = "Mask weared incorrect"
elif i[5] == 2:
color = (0, 255, 0)
text = "With mask"
elif i[5] == 3:
color = (0, 0, 255)
text = "Without mask"
text += ": " + str(round(i[4], 2))
x1 = i[0]
y1 = i[1]
x2 = i[2] - 1
y2 = i[3] - 1
x1 = round(x1)
y1 = round(y1)
x2 = round(x2)
y2 = round(y2)
img = cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
img = cv2.putText(img, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.imwrite('New_result.jpg', img) |