Spaces:
Sleeping
Sleeping
import torch | |
from transformers import ViTForImageClassification, ViTImageProcessor | |
import torch.nn.functional as F | |
from PIL import Image | |
import gradio as gr | |
model = ViTForImageClassification.from_pretrained('Tirath5504/IPD-Image-ViT-Finetune') | |
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') | |
class_names = ['cut_throat_gesture', 'finger_gun_to_the_head', 'middle_finger', 'slanted_eyes_gesture', 'swastika'] | |
def predict(image): | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs).logits | |
# predicted_class_idx = outputs.argmax(-1).item() | |
# predicted_class = class_names[predicted_class_idx] | |
# return predicted_class | |
probabilities = F.softmax(outputs, dim=1) | |
predicted_class_idx = probabilities.argmax(-1).item() | |
predicted_class = class_names[predicted_class_idx] | |
confidence_score = probabilities[0][predicted_class_idx].item() | |
return predicted_class, confidence_score | |
iface = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=1, label="Class"), gr.Label(label="Score")], | |
title="Hateful Content Detection", | |
description="Upload an image to classify hateful gestures or symbols") | |
if __name__ == "__main__": | |
iface.launch() |