File size: 5,275 Bytes
f51bb92
f2daaee
f51bb92
 
6158da4
 
 
 
 
 
 
 
f51bb92
 
6158da4
f51bb92
 
 
6158da4
f51bb92
 
 
f2daaee
f51bb92
 
6158da4
 
f51bb92
6158da4
 
 
 
 
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d056d5
 
 
 
b83cc65
 
 
 
 
 
 
6158da4
 
 
 
 
f51bb92
b83cc65
f51bb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6158da4
f51bb92
6158da4
6d056d5
6158da4
 
f2daaee
 
6158da4
f2daaee
 
 
 
 
 
 
6158da4
 
 
 
f51bb92
b83cc65
6158da4
f2daaee
 
 
 
 
 
 
 
 
 
 
f51bb92
 
f2daaee
 
 
6158da4
 
 
 
6d056d5
f2daaee
 
6158da4
b83cc65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain_core.prompts import PromptTemplate
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import chainlit as cl
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
import yaml
import logging
from dotenv import load_dotenv

import os
import sys

# Add the 'code' directory to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)

from modules.chat.llm_tutor import LLMTutor
from modules.config.constants import *
from modules.chat.helpers import get_sources
from modules.chat_processor.chat_processor import ChatProcessor

global logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.propagate = False

# Console Handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)


# Adding option to select the chat profile
@cl.set_chat_profiles
async def chat_profile():
    return [
        # cl.ChatProfile(
        #     name="Mistral",
        #     markdown_description="Use the local LLM: **Mistral**.",
        # ),
        cl.ChatProfile(
            name="gpt-3.5-turbo-1106",
            markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.",
        ),
        cl.ChatProfile(
            name="gpt-4",
            markdown_description="Use OpenAI API for **gpt-4**.",
        ),
        cl.ChatProfile(
            name="Llama",
            markdown_description="Use the local LLM: **Tiny Llama**.",
        ),
    ]


@cl.author_rename
def rename(orig_author: str):
    rename_dict = {"Chatbot": "AI Tutor"}
    return rename_dict.get(orig_author, orig_author)


# chainlit code
@cl.on_chat_start
async def start():
    with open("modules/config/config.yml", "r") as f:
        config = yaml.safe_load(f)

    # Ensure log directory exists
    log_directory = config["log_dir"]
    if not os.path.exists(log_directory):
        os.makedirs(log_directory)

    # File Handler
    log_file_path = (
        f"{log_directory}/tutor.log"  # Change this to your desired log file path
    )
    file_handler = logging.FileHandler(log_file_path, mode="w")
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)
    logger.addHandler(file_handler)

    logger.info("Config file loaded")
    logger.info(f"Config: {config}")
    logger.info("Creating llm_tutor instance")

    chat_profile = cl.user_session.get("chat_profile")
    if chat_profile is not None:
        if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]:
            config["llm_params"]["llm_loader"] = "openai"
            config["llm_params"]["openai_params"]["model"] = chat_profile.lower()
        elif chat_profile.lower() == "llama":
            config["llm_params"]["llm_loader"] = "local_llm"
            config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH
            config["llm_params"]["local_llm_params"]["model_type"] = "llama"
        elif chat_profile.lower() == "mistral":
            config["llm_params"]["llm_loader"] = "local_llm"
            config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH
            config["llm_params"]["local_llm_params"]["model_type"] = "mistral"

        else:
            pass

    llm_tutor = LLMTutor(config, logger=logger)

    chain = llm_tutor.qa_bot()
    msg = cl.Message(content=f"Starting the bot {chat_profile}...")
    await msg.send()
    msg.content = opening_message
    await msg.update()

    tags = [chat_profile, config["vectorstore"]["db_option"]]
    chat_processor = ChatProcessor(config["chat_logging"]["platform"], tags=tags)
    cl.user_session.set("chain", chain)
    cl.user_session.set("counter", 0)
    cl.user_session.set("chat_processor", chat_processor)


@cl.on_chat_end
async def on_chat_end():
    await cl.Message(content="Sorry, I have to go now. Goodbye!").send()


@cl.on_message
async def main(message):
    global logger
    user = cl.user_session.get("user")
    chain = cl.user_session.get("chain")

    counter = cl.user_session.get("counter")
    counter += 1
    cl.user_session.set("counter", counter)

    # if counter >= 3:  # Ensure the counter condition is checked
    #     await cl.Message(content="Your credits are up!").send()
    #     await on_chat_end()  # Call the on_chat_end function to handle the end of the chat
    #     return  # Exit the function to stop further processing
    # else:

    cb = cl.AsyncLangchainCallbackHandler()  # TODO: fix streaming here
    cb.answer_reached = True

    processor = cl.user_session.get("chat_processor")
    res = await processor.rag(message.content, chain, cb)
    try:
        answer = res["answer"]
    except:
        answer = res["result"]

    answer_with_sources, source_elements, sources_dict = get_sources(res, answer)
    processor._process(message.content, answer, sources_dict)

    await cl.Message(content=answer_with_sources, elements=source_elements).send()