File size: 4,247 Bytes
6158da4
 
 
 
 
 
 
 
 
 
 
 
 
 
b83cc65
 
6158da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d056d5
 
 
 
b83cc65
 
 
 
 
 
 
6158da4
 
 
 
 
b83cc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6158da4
b83cc65
 
6158da4
6d056d5
6158da4
 
 
 
 
 
 
b83cc65
6158da4
b83cc65
 
 
 
6158da4
b83cc65
 
6158da4
 
 
 
 
 
6d056d5
 
 
 
b83cc65
6158da4
b83cc65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.llms import CTransformers
import chainlit as cl
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
import yaml
import logging
from dotenv import load_dotenv

from modules.llm_tutor import LLMTutor
from modules.constants import *
from modules.helpers import get_sources


logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# Console Handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)

# File Handler
log_file_path = "log_file.log"  # Change this to your desired log file path
file_handler = logging.FileHandler(log_file_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)


# Adding option to select the chat profile
@cl.set_chat_profiles
async def chat_profile():
    return [
        # cl.ChatProfile(
        #     name="Mistral",
        #     markdown_description="Use the local LLM: **Mistral**.",
        # ),
        cl.ChatProfile(
            name="gpt-3.5-turbo-1106",
            markdown_description="Use OpenAI API for **gpt-3.5-turbo-1106**.",
        ),
        cl.ChatProfile(
            name="gpt-4",
            markdown_description="Use OpenAI API for **gpt-4**.",
        ),
        cl.ChatProfile(
            name="Llama",
            markdown_description="Use the local LLM: **Tiny Llama**.",
        ),
    ]


@cl.author_rename
def rename(orig_author: str):
    rename_dict = {"Chatbot": "AI Tutor"}
    return rename_dict.get(orig_author, orig_author)


# chainlit code
@cl.on_chat_start
async def start():
    with open("code/config.yml", "r") as f:
        config = yaml.safe_load(f)
        print(config)
        logger.info("Config file loaded")
        logger.info(f"Config: {config}")
        logger.info("Creating llm_tutor instance")

    chat_profile = cl.user_session.get("chat_profile")
    if chat_profile is not None:
        if chat_profile.lower() in ["gpt-3.5-turbo-1106", "gpt-4"]:
            config["llm_params"]["llm_loader"] = "openai"
            config["llm_params"]["openai_params"]["model"] = chat_profile.lower()
        elif chat_profile.lower() == "llama":
            config["llm_params"]["llm_loader"] = "local_llm"
            config["llm_params"]["local_llm_params"]["model"] = LLAMA_PATH
            config["llm_params"]["local_llm_params"]["model_type"] = "llama"
        elif chat_profile.lower() == "mistral":
            config["llm_params"]["llm_loader"] = "local_llm"
            config["llm_params"]["local_llm_params"]["model"] = MISTRAL_PATH
            config["llm_params"]["local_llm_params"]["model_type"] = "mistral"

        else:
            pass

    llm_tutor = LLMTutor(config, logger=logger)

    chain = llm_tutor.qa_bot()
    model = config["llm_params"]["local_llm_params"]["model"]
    msg = cl.Message(content=f"Starting the bot {model}...")
    await msg.send()
    msg.content = opening_message
    await msg.update()

    cl.user_session.set("chain", chain)


@cl.on_message
async def main(message):
    user = cl.user_session.get("user")
    chain = cl.user_session.get("chain")
    # cb = cl.AsyncLangchainCallbackHandler(
    #     stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
    # )
    # cb.answer_reached = True
    # res=await chain.acall(message, callbacks=[cb])
    res = await chain.acall(message.content)
    print(f"response: {res}")
    try:
        answer = res["answer"]
    except:
        answer = res["result"]
    print(f"answer: {answer}")

    logger.info(f"Question: {res['question']}")
    logger.info(f"History: {res['chat_history']}")
    logger.info(f"Answer: {answer}\n")

    answer_with_sources, source_elements = get_sources(res, answer)

    await cl.Message(content=answer_with_sources, elements=source_elements).send()