Spaces:
Build error
Build error
File size: 8,728 Bytes
6158da4 f0018f2 57b7b8d 40de40e f0018f2 ce9ef3e 6158da4 40de40e 6158da4 57b7b8d 40de40e 57b7b8d f0018f2 40de40e 57b7b8d 40de40e 6158da4 b83cc65 6158da4 b83cc65 6d056d5 b83cc65 6158da4 f0018f2 6158da4 57b7b8d f0018f2 6158da4 b83cc65 6d056d5 57b7b8d f0018f2 6d056d5 f0018f2 6158da4 f0018f2 6158da4 57b7b8d 6158da4 57b7b8d f0018f2 6158da4 57b7b8d f0018f2 57b7b8d f0018f2 6158da4 ce9ef3e 6158da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import logging
import os
import yaml
from langchain_community.vectorstores import FAISS, Chroma
from langchain.schema.vectorstore import VectorStoreRetriever
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.schema.document import Document
from langchain_core.callbacks import AsyncCallbackManagerForRetrieverRun
from ragatouille import RAGPretrainedModel
try:
from modules.embedding_model_loader import EmbeddingModelLoader
from modules.data_loader import DataLoader
from modules.constants import *
from modules.helpers import *
except:
from embedding_model_loader import EmbeddingModelLoader
from data_loader import DataLoader
from constants import *
from helpers import *
from typing import List
class VectorDBScore(VectorStoreRetriever):
# See https://github.com/langchain-ai/langchain/blob/61dd92f8215daef3d9cf1734b0d1f8c70c1571c3/libs/langchain/langchain/vectorstores/base.py#L500
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
# Make the score part of the document metadata
for doc, similarity in docs_and_similarities:
doc.metadata["score"] = similarity
docs = [doc for doc, _ in docs_and_similarities]
return docs
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
# Make the score part of the document metadata
for doc, similarity in docs_and_similarities:
doc.metadata["score"] = similarity
docs = [doc for doc, _ in docs_and_similarities]
return docs
class VectorDB:
def __init__(self, config, logger=None):
self.config = config
self.db_option = config["embedding_options"]["db_option"]
self.document_names = None
self.webpage_crawler = WebpageCrawler()
# Set up logging to both console and a file
if logger is None:
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logging.INFO)
# Console Handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
self.logger.addHandler(console_handler)
# File Handler
log_file_path = "vector_db.log" # Change this to your desired log file path
file_handler = logging.FileHandler(log_file_path, mode="w")
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
else:
self.logger = logger
self.logger.info("VectorDB instance instantiated")
def load_files(self):
files = os.listdir(self.config["embedding_options"]["data_path"])
files = [
os.path.join(self.config["embedding_options"]["data_path"], file)
for file in files
]
urls = get_urls_from_file(self.config["embedding_options"]["url_file_path"])
if self.config["embedding_options"]["expand_urls"]:
all_urls = []
for url in urls:
loop = asyncio.get_event_loop()
all_urls.extend(
loop.run_until_complete(
self.webpage_crawler.get_all_pages(
url, url
) # only get child urls, if you want to get all urls, replace the second argument with the base url
)
)
urls = all_urls
return files, urls
def create_embedding_model(self):
self.logger.info("Creating embedding function")
self.embedding_model_loader = EmbeddingModelLoader(self.config)
self.embedding_model = self.embedding_model_loader.load_embedding_model()
def initialize_database(
self,
document_chunks: list,
document_names: list,
documents: list,
document_metadata: list,
):
if self.db_option in ["FAISS", "Chroma"]:
self.create_embedding_model()
# Track token usage
self.logger.info("Initializing vector_db")
self.logger.info("\tUsing {} as db_option".format(self.db_option))
if self.db_option == "FAISS":
self.vector_db = FAISS.from_documents(
documents=document_chunks, embedding=self.embedding_model
)
elif self.db_option == "Chroma":
self.vector_db = Chroma.from_documents(
documents=document_chunks,
embedding=self.embedding_model,
persist_directory=os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
),
)
elif self.db_option == "RAGatouille":
self.RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
index_path = self.RAG.index(
index_name="new_idx",
collection=documents,
document_ids=document_names,
document_metadatas=document_metadata,
)
self.logger.info("Completed initializing vector_db")
def create_database(self):
data_loader = DataLoader(self.config)
self.logger.info("Loading data")
files, urls = self.load_files()
files, webpages = self.webpage_crawler.clean_url_list(urls)
if "storage/data/urls.txt" in files:
files.remove("storage/data/urls.txt")
document_chunks, document_names, documents, document_metadata = (
data_loader.get_chunks(files, webpages)
)
self.logger.info("Completed loading data")
self.initialize_database(
document_chunks, document_names, documents, document_metadata
)
def save_database(self):
if self.db_option == "FAISS":
self.vector_db.save_local(
os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
)
)
elif self.db_option == "Chroma":
# db is saved in the persist directory during initialization
pass
elif self.db_option == "RAGatouille":
# index is saved during initialization
pass
self.logger.info("Saved database")
def load_database(self):
self.create_embedding_model()
if self.db_option == "FAISS":
self.vector_db = FAISS.load_local(
os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
),
self.embedding_model,
allow_dangerous_deserialization=True,
)
elif self.db_option == "Chroma":
self.vector_db = Chroma(
persist_directory=os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
),
embedding_function=self.embedding_model,
)
elif self.db_option == "RAGatouille":
self.vector_db = RAGPretrainedModel.from_index(
".ragatouille/colbert/indexes/new_idx"
)
self.logger.info("Loaded database")
return self.vector_db
if __name__ == "__main__":
with open("code/config.yml", "r") as f:
config = yaml.safe_load(f)
print(config)
vector_db = VectorDB(config)
vector_db.create_database()
vector_db.save_database()
|