Spaces:
Build error
Build error
File size: 8,221 Bytes
57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 dbc26b1 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 71b8a7a 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 b83cc65 57b7b8d b83cc65 57b7b8d b83cc65 57b7b8d b83cc65 57b7b8d 6158da4 57b7b8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import re
import requests
import pysrt
from langchain.document_loaders import (
PyMuPDFLoader,
Docx2txtLoader,
YoutubeLoader,
WebBaseLoader,
TextLoader,
)
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from llama_parse import LlamaParse
from langchain.schema import Document
import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings
logger = logging.getLogger(__name__)
class PDFReader:
def __init__(self):
pass
def get_loader(self, pdf_path):
loader = PyMuPDFLoader(pdf_path)
return loader
def get_documents(self, loader):
return loader.load()
class FileReader:
def __init__(self):
self.pdf_reader = PDFReader()
def extract_text_from_pdf(self, pdf_path):
text = ""
with open(pdf_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
num_pages = len(reader.pages)
for page_num in range(num_pages):
page = reader.pages[page_num]
text += page.extract_text()
return text
def download_pdf_from_url(self, pdf_url):
response = requests.get(pdf_url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(response.content)
temp_file_path = temp_file.name
return temp_file_path
else:
print("Failed to download PDF from URL:", pdf_url)
return None
def read_pdf(self, temp_file_path: str):
# parser = LlamaParse(
# api_key="",
# result_type="markdown",
# num_workers=4,
# verbose=True,
# language="en",
# )
# documents = parser.load_data(temp_file_path)
# with open("temp/output.md", "a") as f:
# for doc in documents:
# f.write(doc.text + "\n")
# markdown_path = "temp/output.md"
# loader = UnstructuredMarkdownLoader(markdown_path)
# loader = PyMuPDFLoader(temp_file_path) # This loader preserves more metadata
# return loader.load()
loader = self.pdf_reader.get_loader(temp_file_path)
documents = self.pdf_reader.get_documents(loader)
return documents
def read_txt(self, temp_file_path: str):
loader = TextLoader(temp_file_path, autodetect_encoding=True)
return loader.load()
def read_docx(self, temp_file_path: str):
loader = Docx2txtLoader(temp_file_path)
return loader.load()
def read_srt(self, temp_file_path: str):
subs = pysrt.open(temp_file_path)
text = ""
for sub in subs:
text += sub.text
return [Document(page_content=text)]
def read_youtube_transcript(self, url: str):
loader = YoutubeLoader.from_youtube_url(
url, add_video_info=True, language=["en"], translation="en"
)
return loader.load()
def read_html(self, url: str):
loader = WebBaseLoader(url)
return loader.load()
class ChunkProcessor:
def __init__(self, config):
self.config = config
self.document_chunks_full = []
self.document_names = []
if config["splitter_options"]["use_splitter"]:
if config["splitter_options"]["split_by_token"]:
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
disallowed_special=(),
)
else:
self.splitter = RecursiveCharacterTextSplitter(
chunk_size=config["splitter_options"]["chunk_size"],
chunk_overlap=config["splitter_options"]["chunk_overlap"],
separators=config["splitter_options"]["chunk_separators"],
disallowed_special=(),
)
else:
self.splitter = None
logger.info("ChunkProcessor instance created")
def remove_delimiters(self, document_chunks: list):
for chunk in document_chunks:
for delimiter in self.config["splitter_options"]["delimiters_to_remove"]:
chunk.page_content = re.sub(delimiter, " ", chunk.page_content)
return document_chunks
def remove_chunks(self, document_chunks: list):
front = self.config["splitter_options"]["front_chunk_to_remove"]
end = self.config["splitter_options"]["last_chunks_to_remove"]
for _ in range(front):
del document_chunks[0]
for _ in range(end):
document_chunks.pop()
logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}")
return document_chunks
def process_chunks(self, documents):
if self.splitter:
document_chunks = self.splitter.split_documents(documents)
else:
document_chunks = documents
if self.config["splitter_options"]["remove_leftover_delimiters"]:
document_chunks = self.remove_delimiters(document_chunks)
if self.config["splitter_options"]["remove_chunks"]:
document_chunks = self.remove_chunks(document_chunks)
return document_chunks
def get_chunks(self, file_reader, uploaded_files, weblinks):
self.document_chunks_full = []
self.document_names = []
for file_index, file_path in enumerate(uploaded_files):
file_name = os.path.basename(file_path)
file_type = file_name.split(".")[-1].lower()
try:
if file_type == "pdf":
documents = file_reader.read_pdf(file_path)
elif file_type == "txt":
documents = file_reader.read_txt(file_path)
elif file_type == "docx":
documents = file_reader.read_docx(file_path)
elif file_type == "srt":
documents = file_reader.read_srt(file_path)
else:
logger.warning(f"Unsupported file type: {file_type}")
continue
document_chunks = self.process_chunks(documents)
self.document_names.append(file_name)
self.document_chunks_full.extend(document_chunks)
except Exception as e:
logger.error(f"Error processing file {file_name}: {str(e)}")
self.process_weblinks(file_reader, weblinks)
logger.info(
f"Total document chunks extracted: {len(self.document_chunks_full)}"
)
return self.document_chunks_full, self.document_names
def process_weblinks(self, file_reader, weblinks):
if weblinks[0] != "":
logger.info(f"Splitting weblinks: total of {len(weblinks)}")
for link_index, link in enumerate(weblinks):
try:
logger.info(f"\tSplitting link {link_index+1} : {link}")
if "youtube" in link:
documents = file_reader.read_youtube_transcript(link)
else:
documents = file_reader.read_html(link)
document_chunks = self.process_chunks(documents)
self.document_names.append(link)
self.document_chunks_full.extend(document_chunks)
except Exception as e:
logger.error(
f"Error splitting link {link_index+1} : {link}: {str(e)}"
)
class DataLoader:
def __init__(self, config):
self.file_reader = FileReader()
self.chunk_processor = ChunkProcessor(config)
def get_chunks(self, uploaded_files, weblinks):
return self.chunk_processor.get_chunks(
self.file_reader, uploaded_files, weblinks
)
|