File size: 8,221 Bytes
57b7b8d
6158da4
57b7b8d
6158da4
 
 
 
 
 
 
 
57b7b8d
 
6158da4
 
57b7b8d
 
 
6158da4
 
 
 
57b7b8d
 
 
6158da4
57b7b8d
 
 
6158da4
57b7b8d
 
 
 
 
 
 
6158da4
dbc26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b7b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6158da4
57b7b8d
 
 
 
 
6158da4
57b7b8d
 
 
6158da4
 
57b7b8d
 
 
 
 
6158da4
57b7b8d
 
 
 
 
 
 
 
6158da4
57b7b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6158da4
71b8a7a
57b7b8d
 
 
6158da4
57b7b8d
6158da4
57b7b8d
 
 
6158da4
 
57b7b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6158da4
57b7b8d
 
 
 
6158da4
57b7b8d
6158da4
 
 
 
b83cc65
 
 
57b7b8d
b83cc65
57b7b8d
b83cc65
57b7b8d
 
b83cc65
57b7b8d
 
 
 
6158da4
 
57b7b8d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import re
import requests
import pysrt
from langchain.document_loaders import (
    PyMuPDFLoader,
    Docx2txtLoader,
    YoutubeLoader,
    WebBaseLoader,
    TextLoader,
)
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from llama_parse import LlamaParse
from langchain.schema import Document
import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings

logger = logging.getLogger(__name__)


class PDFReader:
    def __init__(self):
        pass

    def get_loader(self, pdf_path):
        loader = PyMuPDFLoader(pdf_path)
        return loader

    def get_documents(self, loader):
        return loader.load()


class FileReader:
    def __init__(self):
        self.pdf_reader = PDFReader()

    def extract_text_from_pdf(self, pdf_path):
        text = ""
        with open(pdf_path, "rb") as file:
            reader = PyPDF2.PdfReader(file)
            num_pages = len(reader.pages)
            for page_num in range(num_pages):
                page = reader.pages[page_num]
                text += page.extract_text()
        return text

    def download_pdf_from_url(self, pdf_url):
        response = requests.get(pdf_url)
        if response.status_code == 200:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
                temp_file.write(response.content)
                temp_file_path = temp_file.name
            return temp_file_path
        else:
            print("Failed to download PDF from URL:", pdf_url)
            return None

    def read_pdf(self, temp_file_path: str):
        # parser = LlamaParse(
        #     api_key="",
        #     result_type="markdown",
        #     num_workers=4,
        #     verbose=True,
        #     language="en",
        # )
        # documents = parser.load_data(temp_file_path)

        # with open("temp/output.md", "a") as f:
        #     for doc in documents:
        #         f.write(doc.text + "\n")

        # markdown_path = "temp/output.md"
        # loader = UnstructuredMarkdownLoader(markdown_path)
        # loader = PyMuPDFLoader(temp_file_path)  # This loader preserves more metadata
        # return loader.load()
        loader = self.pdf_reader.get_loader(temp_file_path)
        documents = self.pdf_reader.get_documents(loader)
        return documents

    def read_txt(self, temp_file_path: str):
        loader = TextLoader(temp_file_path, autodetect_encoding=True)
        return loader.load()

    def read_docx(self, temp_file_path: str):
        loader = Docx2txtLoader(temp_file_path)
        return loader.load()

    def read_srt(self, temp_file_path: str):
        subs = pysrt.open(temp_file_path)
        text = ""
        for sub in subs:
            text += sub.text
        return [Document(page_content=text)]

    def read_youtube_transcript(self, url: str):
        loader = YoutubeLoader.from_youtube_url(
            url, add_video_info=True, language=["en"], translation="en"
        )
        return loader.load()

    def read_html(self, url: str):
        loader = WebBaseLoader(url)
        return loader.load()


class ChunkProcessor:
    def __init__(self, config):
        self.config = config
        self.document_chunks_full = []
        self.document_names = []

        if config["splitter_options"]["use_splitter"]:
            if config["splitter_options"]["split_by_token"]:
                self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
                    chunk_size=config["splitter_options"]["chunk_size"],
                    chunk_overlap=config["splitter_options"]["chunk_overlap"],
                    separators=config["splitter_options"]["chunk_separators"],
                    disallowed_special=(),
                )
            else:
                self.splitter = RecursiveCharacterTextSplitter(
                    chunk_size=config["splitter_options"]["chunk_size"],
                    chunk_overlap=config["splitter_options"]["chunk_overlap"],
                    separators=config["splitter_options"]["chunk_separators"],
                    disallowed_special=(),
                )
        else:
            self.splitter = None
        logger.info("ChunkProcessor instance created")

    def remove_delimiters(self, document_chunks: list):
        for chunk in document_chunks:
            for delimiter in self.config["splitter_options"]["delimiters_to_remove"]:
                chunk.page_content = re.sub(delimiter, " ", chunk.page_content)
        return document_chunks

    def remove_chunks(self, document_chunks: list):
        front = self.config["splitter_options"]["front_chunk_to_remove"]
        end = self.config["splitter_options"]["last_chunks_to_remove"]
        for _ in range(front):
            del document_chunks[0]
        for _ in range(end):
            document_chunks.pop()
        logger.info(f"\tNumber of pages after skipping: {len(document_chunks)}")
        return document_chunks

    def process_chunks(self, documents):
        if self.splitter:
            document_chunks = self.splitter.split_documents(documents)
        else:
            document_chunks = documents

        if self.config["splitter_options"]["remove_leftover_delimiters"]:
            document_chunks = self.remove_delimiters(document_chunks)
        if self.config["splitter_options"]["remove_chunks"]:
            document_chunks = self.remove_chunks(document_chunks)

        return document_chunks

    def get_chunks(self, file_reader, uploaded_files, weblinks):
        self.document_chunks_full = []
        self.document_names = []

        for file_index, file_path in enumerate(uploaded_files):
            file_name = os.path.basename(file_path)
            file_type = file_name.split(".")[-1].lower()

            try:
                if file_type == "pdf":
                    documents = file_reader.read_pdf(file_path)
                elif file_type == "txt":
                    documents = file_reader.read_txt(file_path)
                elif file_type == "docx":
                    documents = file_reader.read_docx(file_path)
                elif file_type == "srt":
                    documents = file_reader.read_srt(file_path)
                else:
                    logger.warning(f"Unsupported file type: {file_type}")
                    continue

                document_chunks = self.process_chunks(documents)
                self.document_names.append(file_name)
                self.document_chunks_full.extend(document_chunks)

            except Exception as e:
                logger.error(f"Error processing file {file_name}: {str(e)}")

        self.process_weblinks(file_reader, weblinks)

        logger.info(
            f"Total document chunks extracted: {len(self.document_chunks_full)}"
        )
        return self.document_chunks_full, self.document_names

    def process_weblinks(self, file_reader, weblinks):
        if weblinks[0] != "":
            logger.info(f"Splitting weblinks: total of {len(weblinks)}")

            for link_index, link in enumerate(weblinks):
                try:
                    logger.info(f"\tSplitting link {link_index+1} : {link}")
                    if "youtube" in link:
                        documents = file_reader.read_youtube_transcript(link)
                    else:
                        documents = file_reader.read_html(link)

                    document_chunks = self.process_chunks(documents)
                    self.document_names.append(link)
                    self.document_chunks_full.extend(document_chunks)
                except Exception as e:
                    logger.error(
                        f"Error splitting link {link_index+1} : {link}: {str(e)}"
                    )


class DataLoader:
    def __init__(self, config):
        self.file_reader = FileReader()
        self.chunk_processor = ChunkProcessor(config)

    def get_chunks(self, uploaded_files, weblinks):
        return self.chunk_processor.get_chunks(
            self.file_reader, uploaded_files, weblinks
        )