Spaces:
Build error
Build error
File size: 7,272 Bytes
6158da4 57b7b8d ce9ef3e 6158da4 57b7b8d 6158da4 b83cc65 6158da4 b83cc65 6158da4 dbc26b1 57b7b8d dbc26b1 57b7b8d dbc26b1 6158da4 57b7b8d 6158da4 b83cc65 dbc26b1 57b7b8d b83cc65 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 57b7b8d 6158da4 ce9ef3e 6158da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import logging
import os
import yaml
from langchain.vectorstores import FAISS, Chroma
from langchain.schema.vectorstore import VectorStoreRetriever
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.schema.document import Document
try:
from modules.embedding_model_loader import EmbeddingModelLoader
from modules.data_loader import DataLoader
from modules.constants import *
from modules.helpers import *
except:
from embedding_model_loader import EmbeddingModelLoader
from data_loader import DataLoader
from constants import *
from helpers import *
class VectorDBScore(VectorStoreRetriever):
# See https://github.com/langchain-ai/langchain/blob/61dd92f8215daef3d9cf1734b0d1f8c70c1571c3/libs/langchain/langchain/vectorstores/base.py#L500
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
):
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
# Make the score part of the document metadata
for doc, similarity in docs_and_similarities:
doc.metadata["score"] = similarity
docs = [doc for doc, _ in docs_and_similarities]
return docs
class VectorDB:
def __init__(self, config, logger=None):
self.config = config
self.db_option = config["embedding_options"]["db_option"]
self.document_names = None
self.webpage_crawler = WebpageCrawler()
# Set up logging to both console and a file
if logger is None:
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logging.INFO)
# Console Handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
self.logger.addHandler(console_handler)
# File Handler
log_file_path = "vector_db.log" # Change this to your desired log file path
file_handler = logging.FileHandler(log_file_path, mode="w")
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
else:
self.logger = logger
self.logger.info("VectorDB instance instantiated")
def load_files(self):
files = os.listdir(self.config["embedding_options"]["data_path"])
files = [
os.path.join(self.config["embedding_options"]["data_path"], file)
for file in files
]
urls = get_urls_from_file(self.config["embedding_options"]["url_file_path"])
if self.config["embedding_options"]["expand_urls"]:
all_urls = []
for url in urls:
base_url = get_base_url(url)
all_urls.extend(self.webpage_crawler.get_all_pages(url, base_url))
urls = all_urls
return files, urls
def clean_url_list(self, urls):
# get lecture pdf links
lecture_pdfs = [link for link in urls if link.endswith(".pdf")]
lecture_pdfs = [link for link in lecture_pdfs if "lecture" in link.lower()]
urls = [
link for link in urls if link.endswith("/")
] # only keep links that end with a '/'. Extract Files Seperately
return urls, lecture_pdfs
def create_embedding_model(self):
self.logger.info("Creating embedding function")
self.embedding_model_loader = EmbeddingModelLoader(self.config)
self.embedding_model = self.embedding_model_loader.load_embedding_model()
def initialize_database(self, document_chunks: list, document_names: list):
# Track token usage
self.logger.info("Initializing vector_db")
self.logger.info("\tUsing {} as db_option".format(self.db_option))
if self.db_option == "FAISS":
self.vector_db = FAISS.from_documents(
documents=document_chunks, embedding=self.embedding_model
)
elif self.db_option == "Chroma":
self.vector_db = Chroma.from_documents(
documents=document_chunks,
embedding=self.embedding_model,
persist_directory=os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
),
)
self.logger.info("Completed initializing vector_db")
def create_database(self):
data_loader = DataLoader(self.config)
self.logger.info("Loading data")
files, urls = self.load_files()
urls, lecture_pdfs = self.clean_url_list(urls)
files += lecture_pdfs
if "storage/data/urls.txt" in files:
files.remove("storage/data/urls.txt")
document_chunks, document_names = data_loader.get_chunks(files, urls)
self.logger.info("Completed loading data")
self.create_embedding_model()
self.initialize_database(document_chunks, document_names)
def save_database(self):
if self.db_option == "FAISS":
self.vector_db.save_local(
os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
)
)
elif self.db_option == "Chroma":
# db is saved in the persist directory during initialization
pass
self.logger.info("Saved database")
def load_database(self):
self.create_embedding_model()
if self.db_option == "FAISS":
self.vector_db = FAISS.load_local(
os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
),
self.embedding_model,
allow_dangerous_deserialization=True,
)
elif self.db_option == "Chroma":
self.vector_db = Chroma(
persist_directory=os.path.join(
self.config["embedding_options"]["db_path"],
"db_"
+ self.config["embedding_options"]["db_option"]
+ "_"
+ self.config["embedding_options"]["model"],
),
embedding_function=self.embedding_model,
)
self.logger.info("Loaded database")
return self.vector_db
if __name__ == "__main__":
with open("code/config.yml", "r") as f:
config = yaml.safe_load(f)
print(config)
vector_db = VectorDB(config)
vector_db.create_database()
vector_db.save_database()
|