File size: 9,493 Bytes
f51bb92
 
 
 
 
 
 
 
 
 
 
 
a2ac5f7
f51bb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ac5f7
f51bb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.memory import (
    ConversationBufferWindowMemory,
    ConversationSummaryBufferMemory,
)
from langchain.chains.conversational_retrieval.prompts import QA_PROMPT
import os
from modules.config.constants import *
from modules.chat.helpers import get_prompt
from modules.chat.chat_model_loader import ChatModelLoader
from modules.vectorstore.store_manager import VectorStoreManager

from modules.retriever import Retriever

from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
from langchain_core.callbacks.manager import AsyncCallbackManagerForChainRun
import inspect
from langchain.chains.conversational_retrieval.base import _get_chat_history
from langchain_core.messages import BaseMessage

CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOpenAI


class CustomConversationalRetrievalChain(ConversationalRetrievalChain):

    def _get_chat_history(self, chat_history: List[CHAT_TURN_TYPE]) -> str:
        _ROLE_MAP = {"human": "Student: ", "ai": "AI Tutor: "}
        buffer = ""
        for dialogue_turn in chat_history:
            if isinstance(dialogue_turn, BaseMessage):
                role_prefix = _ROLE_MAP.get(
                    dialogue_turn.type, f"{dialogue_turn.type}: "
                )
                buffer += f"\n{role_prefix}{dialogue_turn.content}"
            elif isinstance(dialogue_turn, tuple):
                human = "Student: " + dialogue_turn[0]
                ai = "AI Tutor: " + dialogue_turn[1]
                buffer += "\n" + "\n".join([human, ai])
            else:
                raise ValueError(
                    f"Unsupported chat history format: {type(dialogue_turn)}."
                    f" Full chat history: {chat_history} "
                )
        return buffer

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
        question = inputs["question"]
        get_chat_history = self._get_chat_history
        chat_history_str = get_chat_history(inputs["chat_history"])
        if chat_history_str:
            # callbacks = _run_manager.get_child()
            # new_question = await self.question_generator.arun(
            #     question=question, chat_history=chat_history_str, callbacks=callbacks
            # )
            system = (
                "You are an AI Tutor helping a student. Your task is to rephrase the student's question to provide more context from their chat history (only if relevant), ensuring the rephrased question still reflects the student's point of view. "
                "The rephrased question should incorporate relevant details from the chat history to make it clearer and more specific. It should also expand upon the original question to provide more context on only what the student provided."
                "Always end the rephrased question with the original question in parentheses for reference. "
                "Do not change the meaning of the question, and keep the tone and perspective as if it were asked by the student. "
                "Here is the chat history for context: \n{chat_history_str}\n"
                "Now, rephrase the following question: '{question}'"
            )
            prompt = ChatPromptTemplate.from_messages(
                [
                    ("system", system),
                    ("human", "{question}, {chat_history_str}"),
                ]
            )
            llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
            step_back = prompt | llm | StrOutputParser()
            new_question = step_back.invoke(
                {"question": question, "chat_history_str": chat_history_str}
            )
        else:
            new_question = question
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._aget_docs).parameters
        )
        if accepts_run_manager:
            docs = await self._aget_docs(new_question, inputs, run_manager=_run_manager)
        else:
            docs = await self._aget_docs(new_question, inputs)  # type: ignore[call-arg]

        output: Dict[str, Any] = {}
        if self.response_if_no_docs_found is not None and len(docs) == 0:
            output[self.output_key] = self.response_if_no_docs_found
        else:
            new_inputs = inputs.copy()
            if self.rephrase_question:
                new_inputs["question"] = new_question
            new_inputs["chat_history"] = chat_history_str

            # Prepare the final prompt with metadata
            context = "\n\n".join(
                [
                    f"Context {idx+1}: \n(Document content: {doc.page_content}\nMetadata: (source_file: {doc.metadata['source']}))"
                    for idx, doc in enumerate(docs)
                ]
            )
            final_prompt = (
                "You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. "
                "Use the following pieces of information to answer the user's question. "
                "If you don't know the answer, try your best, but don't try to make up an answer. Keep the flow of the conversation going. "
                "Use the chat history just as a gist to answer the question only if it's relevant; otherwise, ignore it. Do not repeat responses in the history. Use the context as a guide to construct your answer. The context for the answer will be under 'Document context:'. Remember, the conext may include text not directly related to the question."
                "Make sure to use the source_file field in metadata from each document to provide links to the user to the correct sources. "
                "The context is ordered by relevance to the question. "
                "Talk in a friendly and personalized manner, similar to how you would speak to a friend who needs help. Make the conversation engaging and avoid sounding repetitive or robotic.\n\n"
                f"Chat History:\n{chat_history_str}\n\n"
                f"Context:\n{context}\n\n"
                f"Student: {new_question}\n"
                "Anwer the student's question in a friendly, concise, and engaging manner.\n"
                "AI Tutor:"
            )

            new_inputs["input"] = final_prompt
            new_inputs["question"] = final_prompt
            output["final_prompt"] = final_prompt

            answer = await self.combine_docs_chain.arun(
                input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
            )
            output[self.output_key] = answer

        if self.return_source_documents:
            output["source_documents"] = docs
        if self.return_generated_question:
            output["generated_question"] = new_question
        return output


class LLMTutor:
    def __init__(self, config, logger=None):
        self.config = config
        self.llm = self.load_llm()
        self.logger = logger
        self.vector_db = VectorStoreManager(config, logger=self.logger)
        if self.config["vectorstore"]["embedd_files"]:
            self.vector_db.create_database()
            self.vector_db.save_database()

    def set_custom_prompt(self):
        """
        Prompt template for QA retrieval for each vectorstore
        """
        prompt = get_prompt(self.config)
        # prompt = QA_PROMPT

        return prompt

    # Retrieval QA Chain
    def retrieval_qa_chain(self, llm, prompt, db):

        retriever = Retriever(self.config)._return_retriever(db)

        if self.config["llm_params"]["use_history"]:
            memory = ConversationBufferWindowMemory(
                k=self.config["llm_params"]["memory_window"],
                memory_key="chat_history",
                return_messages=True,
                output_key="answer",
                max_token_limit=128,
            )
            qa_chain = CustomConversationalRetrievalChain.from_llm(
                llm=llm,
                chain_type="stuff",
                retriever=retriever,
                return_source_documents=True,
                memory=memory,
                combine_docs_chain_kwargs={"prompt": prompt},
                response_if_no_docs_found="No context found",
            )
        else:
            qa_chain = RetrievalQA.from_chain_type(
                llm=llm,
                chain_type="stuff",
                retriever=retriever,
                return_source_documents=True,
                chain_type_kwargs={"prompt": prompt},
            )
        return qa_chain

    # Loading the model
    def load_llm(self):
        chat_model_loader = ChatModelLoader(self.config)
        llm = chat_model_loader.load_chat_model()
        return llm

    # QA Model Function
    def qa_bot(self):
        db = self.vector_db.load_database()
        qa_prompt = self.set_custom_prompt()
        qa = self.retrieval_qa_chain(
            self.llm, qa_prompt, db
        )  # TODO:  PROMPT is overwritten in CustomConversationalRetrievalChain

        return qa

    # output function
    def final_result(query):
        qa_result = qa_bot()
        response = qa_result({"query": query})
        return response