Spaces:
Build error
Build error
import os | |
import re | |
import requests | |
import pysrt | |
from langchain_community.document_loaders import ( | |
PyMuPDFLoader, | |
Docx2txtLoader, | |
YoutubeLoader, | |
WebBaseLoader, | |
TextLoader, | |
) | |
from langchain_community.document_loaders import UnstructuredMarkdownLoader | |
from llama_parse import LlamaParse | |
from langchain.schema import Document | |
import logging | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from ragatouille import RAGPretrainedModel | |
from langchain.chains import LLMChain | |
from langchain_community.llms import OpenAI | |
from langchain import PromptTemplate | |
import json | |
from concurrent.futures import ThreadPoolExecutor | |
from modules.dataloader.helpers import get_metadata | |
class PDFReader: | |
def __init__(self): | |
pass | |
def get_loader(self, pdf_path): | |
loader = PyMuPDFLoader(pdf_path) | |
return loader | |
def get_documents(self, loader): | |
return loader.load() | |
class FileReader: | |
def __init__(self, logger): | |
self.pdf_reader = PDFReader() | |
self.logger = logger | |
def extract_text_from_pdf(self, pdf_path): | |
text = "" | |
with open(pdf_path, "rb") as file: | |
reader = PyPDF2.PdfReader(file) | |
num_pages = len(reader.pages) | |
for page_num in range(num_pages): | |
page = reader.pages[page_num] | |
text += page.extract_text() | |
return text | |
def download_pdf_from_url(self, pdf_url): | |
response = requests.get(pdf_url) | |
if response.status_code == 200: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: | |
temp_file.write(response.content) | |
temp_file_path = temp_file.name | |
return temp_file_path | |
else: | |
self.logger.error(f"Failed to download PDF from URL: {pdf_url}") | |
return None | |
def read_pdf(self, temp_file_path: str): | |
loader = self.pdf_reader.get_loader(temp_file_path) | |
documents = self.pdf_reader.get_documents(loader) | |
return documents | |
def read_txt(self, temp_file_path: str): | |
loader = TextLoader(temp_file_path, autodetect_encoding=True) | |
return loader.load() | |
def read_docx(self, temp_file_path: str): | |
loader = Docx2txtLoader(temp_file_path) | |
return loader.load() | |
def read_srt(self, temp_file_path: str): | |
subs = pysrt.open(temp_file_path) | |
text = "" | |
for sub in subs: | |
text += sub.text | |
return [Document(page_content=text)] | |
def read_youtube_transcript(self, url: str): | |
loader = YoutubeLoader.from_youtube_url( | |
url, add_video_info=True, language=["en"], translation="en" | |
) | |
return loader.load() | |
def read_html(self, url: str): | |
loader = WebBaseLoader(url) | |
return loader.load() | |
def read_tex_from_url(self, tex_url): | |
response = requests.get(tex_url) | |
if response.status_code == 200: | |
return [Document(page_content=response.text)] | |
else: | |
self.logger.error(f"Failed to fetch .tex file from URL: {tex_url}") | |
return None | |
class ChunkProcessor: | |
def __init__(self, config, logger): | |
self.config = config | |
self.logger = logger | |
self.document_data = {} | |
self.document_metadata = {} | |
self.document_chunks_full = [] | |
if config["splitter_options"]["use_splitter"]: | |
if config["splitter_options"]["split_by_token"]: | |
self.splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( | |
chunk_size=config["splitter_options"]["chunk_size"], | |
chunk_overlap=config["splitter_options"]["chunk_overlap"], | |
separators=config["splitter_options"]["chunk_separators"], | |
disallowed_special=(), | |
) | |
else: | |
self.splitter = RecursiveCharacterTextSplitter( | |
chunk_size=config["splitter_options"]["chunk_size"], | |
chunk_overlap=config["splitter_options"]["chunk_overlap"], | |
separators=config["splitter_options"]["chunk_separators"], | |
disallowed_special=(), | |
) | |
else: | |
self.splitter = None | |
self.logger.info("ChunkProcessor instance created") | |
def remove_delimiters(self, document_chunks: list): | |
for chunk in document_chunks: | |
for delimiter in self.config["splitter_options"]["delimiters_to_remove"]: | |
chunk.page_content = re.sub(delimiter, " ", chunk.page_content) | |
return document_chunks | |
def remove_chunks(self, document_chunks: list): | |
front = self.config["splitter_options"]["front_chunk_to_remove"] | |
end = self.config["splitter_options"]["last_chunks_to_remove"] | |
for _ in range(front): | |
del document_chunks[0] | |
for _ in range(end): | |
document_chunks.pop() | |
return document_chunks | |
def process_chunks( | |
self, documents, file_type="txt", source="", page=0, metadata={} | |
): | |
documents = [Document(page_content=documents, source=source, page=page)] | |
if ( | |
file_type == "txt" | |
or file_type == "docx" | |
or file_type == "srt" | |
or file_type == "tex" | |
): | |
document_chunks = self.splitter.split_documents(documents) | |
elif file_type == "pdf": | |
document_chunks = documents # Full page for now | |
# add the source and page number back to the metadata | |
for chunk in document_chunks: | |
chunk.metadata["source"] = source | |
chunk.metadata["page"] = page | |
# add the metadata extracted from the document | |
for key, value in metadata.items(): | |
chunk.metadata[key] = value | |
if self.config["splitter_options"]["remove_leftover_delimiters"]: | |
document_chunks = self.remove_delimiters(document_chunks) | |
if self.config["splitter_options"]["remove_chunks"]: | |
document_chunks = self.remove_chunks(document_chunks) | |
return document_chunks | |
def chunk_docs(self, file_reader, uploaded_files, weblinks): | |
addl_metadata = get_metadata( | |
"https://dl4ds.github.io/sp2024/lectures/", | |
"https://dl4ds.github.io/sp2024/schedule/", | |
) # For any additional metadata | |
with ThreadPoolExecutor() as executor: | |
executor.map( | |
self.process_file, | |
uploaded_files, | |
range(len(uploaded_files)), | |
[file_reader] * len(uploaded_files), | |
[addl_metadata] * len(uploaded_files), | |
) | |
executor.map( | |
self.process_weblink, | |
weblinks, | |
range(len(weblinks)), | |
[file_reader] * len(weblinks), | |
[addl_metadata] * len(weblinks), | |
) | |
document_names = [ | |
f"{file_name}_{page_num}" | |
for file_name, pages in self.document_data.items() | |
for page_num in pages.keys() | |
] | |
documents = [ | |
page for doc in self.document_data.values() for page in doc.values() | |
] | |
document_metadata = [ | |
page for doc in self.document_metadata.values() for page in doc.values() | |
] | |
self.save_document_data() | |
self.logger.info( | |
f"Total document chunks extracted: {len(self.document_chunks_full)}" | |
) | |
return self.document_chunks_full, document_names, documents, document_metadata | |
def process_documents( | |
self, documents, file_path, file_type, metadata_source, addl_metadata | |
): | |
file_data = {} | |
file_metadata = {} | |
for doc in documents: | |
# if len(doc.page_content) <= 400: # better approach to filter out non-informative documents | |
# continue | |
page_num = doc.metadata.get("page", 0) | |
file_data[page_num] = doc.page_content | |
metadata = ( | |
addl_metadata.get(file_path, {}) | |
if metadata_source == "file" | |
else {"source": file_path, "page": page_num} | |
) | |
file_metadata[page_num] = metadata | |
if self.config["vectorstore"]["db_option"] not in ["RAGatouille"]: | |
document_chunks = self.process_chunks( | |
doc.page_content, | |
file_type, | |
source=file_path, | |
page=page_num, | |
metadata=metadata, | |
) | |
self.document_chunks_full.extend(document_chunks) | |
self.document_data[file_path] = file_data | |
self.document_metadata[file_path] = file_metadata | |
def process_file(self, file_path, file_index, file_reader, addl_metadata): | |
file_name = os.path.basename(file_path) | |
if file_name in self.document_data: | |
return | |
file_type = file_name.split(".")[-1].lower() | |
self.logger.info(f"Reading file {file_index + 1}: {file_path}") | |
read_methods = { | |
"pdf": file_reader.read_pdf, | |
"txt": file_reader.read_txt, | |
"docx": file_reader.read_docx, | |
"srt": file_reader.read_srt, | |
"tex": file_reader.read_tex_from_url, | |
} | |
if file_type not in read_methods: | |
self.logger.warning(f"Unsupported file type: {file_type}") | |
return | |
try: | |
documents = read_methods[file_type](file_path) | |
self.process_documents( | |
documents, file_path, file_type, "file", addl_metadata | |
) | |
except Exception as e: | |
self.logger.error(f"Error processing file {file_name}: {str(e)}") | |
def process_weblink(self, link, link_index, file_reader, addl_metadata): | |
if link in self.document_data: | |
return | |
self.logger.info(f"Reading link {link_index + 1} : {link}") | |
try: | |
if "youtube" in link: | |
documents = file_reader.read_youtube_transcript(link) | |
else: | |
documents = file_reader.read_html(link) | |
self.process_documents(documents, link, "txt", "link", addl_metadata) | |
except Exception as e: | |
self.logger.error(f"Error Reading link {link_index + 1} : {link}: {str(e)}") | |
def save_document_data(self): | |
if not os.path.exists(f"{self.config['log_chunk_dir']}/docs"): | |
os.makedirs(f"{self.config['log_chunk_dir']}/docs") | |
self.logger.info( | |
f"Creating directory {self.config['log_chunk_dir']}/docs for document data" | |
) | |
self.logger.info( | |
f"Saving document content to {self.config['log_chunk_dir']}/docs/doc_content.json" | |
) | |
if not os.path.exists(f"{self.config['log_chunk_dir']}/metadata"): | |
os.makedirs(f"{self.config['log_chunk_dir']}/metadata") | |
self.logger.info( | |
f"Creating directory {self.config['log_chunk_dir']}/metadata for document metadata" | |
) | |
self.logger.info( | |
f"Saving document metadata to {self.config['log_chunk_dir']}/metadata/doc_metadata.json" | |
) | |
with open( | |
f"{self.config['log_chunk_dir']}/docs/doc_content.json", "w" | |
) as json_file: | |
json.dump(self.document_data, json_file, indent=4) | |
with open( | |
f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "w" | |
) as json_file: | |
json.dump(self.document_metadata, json_file, indent=4) | |
def load_document_data(self): | |
with open( | |
f"{self.config['log_chunk_dir']}/docs/doc_content.json", "r" | |
) as json_file: | |
self.document_data = json.load(json_file) | |
with open( | |
f"{self.config['log_chunk_dir']}/metadata/doc_metadata.json", "r" | |
) as json_file: | |
self.document_metadata = json.load(json_file) | |
class DataLoader: | |
def __init__(self, config, logger=None): | |
self.file_reader = FileReader(logger=logger) | |
self.chunk_processor = ChunkProcessor(config, logger=logger) | |
def get_chunks(self, uploaded_files, weblinks): | |
return self.chunk_processor.chunk_docs( | |
self.file_reader, uploaded_files, weblinks | |
) | |
if __name__ == "__main__": | |
import yaml | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
with open("../code/modules/config/config.yml", "r") as f: | |
config = yaml.safe_load(f) | |
data_loader = DataLoader(config, logger=logger) | |
document_chunks, document_names, documents, document_metadata = ( | |
data_loader.get_chunks( | |
[], | |
["https://dl4ds.github.io/sp2024/"], | |
) | |
) | |
print(document_names) | |
print(len(document_chunks)) | |