dl4ds_tutor / code /main.py
XThomasBU's picture
init commit
6158da4
raw
history blame
3.63 kB
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.llms import CTransformers
import chainlit as cl
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
import yaml
import logging
from dotenv import load_dotenv
from modules.llm_tutor import LLMTutor
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Console Handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# File Handler
log_file_path = "log_file.log" # Change this to your desired log file path
file_handler = logging.FileHandler(log_file_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
with open("config.yml", "r") as f:
config = yaml.safe_load(f)
print(config)
logger.info("Config file loaded")
logger.info(f"Config: {config}")
logger.info("Creating llm_tutor instance")
llm_tutor = LLMTutor(config, logger=logger)
# chainlit code
@cl.on_chat_start
async def start():
chain = llm_tutor.qa_bot()
msg = cl.Message(content="Starting the bot...")
await msg.send()
msg.content = "Hey, What Can I Help You With?"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
# res=await chain.acall(message, callbacks=[cb])
res = await chain.acall(message.content, callbacks=[cb])
# print(f"response: {res}")
try:
answer = res["answer"]
except:
answer = res["result"]
print(f"answer: {answer}")
source_elements_dict = {}
source_elements = []
found_sources = []
for idx, source in enumerate(res["source_documents"]):
title = source.metadata["source"]
if title not in source_elements_dict:
source_elements_dict[title] = {
"page_number": [source.metadata["page"]],
"url": source.metadata["source"],
"content": source.page_content,
}
else:
source_elements_dict[title]["page_number"].append(source.metadata["page"])
source_elements_dict[title][
"content_" + str(source.metadata["page"])
] = source.page_content
# sort the page numbers
# source_elements_dict[title]["page_number"].sort()
for title, source in source_elements_dict.items():
# create a string for the page numbers
page_numbers = ", ".join([str(x) for x in source["page_number"]])
text_for_source = f"Page Number(s): {page_numbers}\nURL: {source['url']}"
source_elements.append(cl.Pdf(name="File", path=title))
found_sources.append("File")
# for pn in source["page_number"]:
# source_elements.append(
# cl.Text(name=str(pn), content=source["content_"+str(pn)])
# )
# found_sources.append(str(pn))
if found_sources:
answer += f"\nSource:{', '.join(found_sources)}"
else:
answer += f"\nNo source found."
await cl.Message(content=answer, elements=source_elements).send()