Spaces:
Build error
Build error
from modules.config.constants import * | |
import chainlit as cl | |
from langchain_core.prompts import PromptTemplate | |
def get_sources(res, answer): | |
source_elements = [] | |
source_dict = {} # Dictionary to store URL elements | |
for idx, source in enumerate(res["source_documents"]): | |
source_metadata = source.metadata | |
url = source_metadata["source"] | |
score = source_metadata.get("score", "N/A") | |
page = source_metadata.get("page", 1) | |
lecture_tldr = source_metadata.get("tldr", "N/A") | |
lecture_recording = source_metadata.get("lecture_recording", "N/A") | |
suggested_readings = source_metadata.get("suggested_readings", "N/A") | |
date = source_metadata.get("date", "N/A") | |
source_type = source_metadata.get("source_type", "N/A") | |
url_name = f"{url}_{page}" | |
if url_name not in source_dict: | |
source_dict[url_name] = { | |
"text": source.page_content, | |
"url": url, | |
"score": score, | |
"page": page, | |
"lecture_tldr": lecture_tldr, | |
"lecture_recording": lecture_recording, | |
"suggested_readings": suggested_readings, | |
"date": date, | |
"source_type": source_type, | |
} | |
else: | |
source_dict[url_name]["text"] += f"\n\n{source.page_content}" | |
# First, display the answer | |
full_answer = "**Answer:**\n" | |
full_answer += answer | |
# Then, display the sources | |
full_answer += "\n\n**Sources:**\n" | |
for idx, (url_name, source_data) in enumerate(source_dict.items()): | |
full_answer += f"\nSource {idx + 1} (Score: {source_data['score']}): {source_data['url']}\n" | |
name = f"Source {idx + 1} Text\n" | |
full_answer += name | |
source_elements.append( | |
cl.Text(name=name, content=source_data["text"], display="side") | |
) | |
# Add a PDF element if the source is a PDF file | |
if source_data["url"].lower().endswith(".pdf"): | |
name = f"Source {idx + 1} PDF\n" | |
full_answer += name | |
pdf_url = f"{source_data['url']}#page={source_data['page']+1}" | |
source_elements.append(cl.Pdf(name=name, url=pdf_url, display="side")) | |
full_answer += "\n**Metadata:**\n" | |
for idx, (url_name, source_data) in enumerate(source_dict.items()): | |
full_answer += f"\nSource {idx + 1} Metadata:\n" | |
source_elements.append( | |
cl.Text( | |
name=f"Source {idx + 1} Metadata", | |
content=f"Source: {source_data['url']}\n" | |
f"Page: {source_data['page']}\n" | |
f"Type: {source_data['source_type']}\n" | |
f"Date: {source_data['date']}\n" | |
f"TL;DR: {source_data['lecture_tldr']}\n" | |
f"Lecture Recording: {source_data['lecture_recording']}\n" | |
f"Suggested Readings: {source_data['suggested_readings']}\n", | |
display="side", | |
) | |
) | |
return full_answer, source_elements | |
def get_prompt(config): | |
if config["llm_params"]["use_history"]: | |
if config["llm_params"]["llm_loader"] == "local_llm": | |
custom_prompt_template = tinyllama_prompt_template_with_history | |
elif config["llm_params"]["llm_loader"] == "openai": | |
custom_prompt_template = openai_prompt_template_with_history | |
# else: | |
# custom_prompt_template = tinyllama_prompt_template_with_history # default | |
prompt = PromptTemplate( | |
template=custom_prompt_template, | |
input_variables=["context", "chat_history", "question"], | |
) | |
else: | |
if config["llm_params"]["llm_loader"] == "local_llm": | |
custom_prompt_template = tinyllama_prompt_template | |
elif config["llm_params"]["llm_loader"] == "openai": | |
custom_prompt_template = openai_prompt_template | |
# else: | |
# custom_prompt_template = tinyllama_prompt_template | |
prompt = PromptTemplate( | |
template=custom_prompt_template, | |
input_variables=["context", "question"], | |
) | |
return prompt | |