from langchain_community.embeddings import OpenAIEmbeddings from langchain.embeddings import HuggingFaceEmbeddings from modules.constants import * class EmbeddingModelLoader: def __init__(self, config): self.config = config def load_embedding_model(self): if self.config["embedding_options"]["model"] in ["text-embedding-ada-002"]: embedding_model = OpenAIEmbeddings( deployment="SL-document_embedder", model=self.config["embedding_options"]["model"], show_progress_bar=True, openai_api_key=OPENAI_API_KEY, ) else: embedding_model = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}, ) return embedding_model