Spaces:
Runtime error
Runtime error
File size: 8,528 Bytes
3f043c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ee7e0c23-3fa5-4547-8598-7df27a3876c5",
"metadata": {},
"outputs": [],
"source": [
"from icevision.all import *\n",
"import icedata\n",
"import PIL, requests\n",
"import torch\n",
"from torchvision import transforms\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "646cc218-f7de-4f32-a3d9-fccdc9b54592",
"metadata": {},
"outputs": [],
"source": [
"# Download the dataset\n",
"url = \"https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip\"\n",
"dest_dir = \"fridge\"\n",
"data_dir = icedata.load_data(url, dest_dir)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "96184ca0-0b0a-4a20-8ab9-30dee6096588",
"metadata": {},
"outputs": [],
"source": [
"# Create the parser\n",
"parser = parsers.VOCBBoxParser(annotations_dir=data_dir / \"odFridgeObjects/annotations\", images_dir=data_dir / \"odFridgeObjects/images\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "dfa20f76-4970-479a-9497-871fe4cfd170",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc8e676815314038a40c884c8c7f5b67",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/128 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[1m\u001b[1mINFO \u001b[0m\u001b[1m\u001b[0m - \u001b[1m\u001b[34m\u001b[1mAutofixing records\u001b[0m\u001b[1m\u001b[34m\u001b[0m\u001b[1m\u001b[0m | \u001b[36micevision.parsers.parser\u001b[0m:\u001b[36mparse\u001b[0m:\u001b[36m122\u001b[0m\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3db4bc1ae388495eb3b62289459a5c00",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/128 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<ClassMap: {'background': 0, 'carton': 1, 'milk_bottle': 2, 'can': 3, 'water_bottle': 4}>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Parse annotations to create records\n",
"train_records, valid_records = parser.parse()\n",
"parser.class_map"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "26d4f2f7-db51-413c-838f-f80c5898ab52",
"metadata": {},
"outputs": [],
"source": [
"class_map = parser.class_map"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "007b2e97-d546-4178-84e7-d4fe597f3731",
"metadata": {},
"outputs": [],
"source": [
"extra_args = {}\n",
"model_type = models.torchvision.retinanet\n",
"backbone = model_type.backbones.resnet50_fpn\n",
"# Instantiate the model\n",
"model = model_type.model(backbone=backbone(pretrained=True), num_classes=len(parser.class_map), **extra_args) "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7b664cbf-3ab0-46df-a9d0-c4eb5c3c026d",
"metadata": {},
"outputs": [],
"source": [
"# Transforms\n",
"# size is set to 384 because EfficientDet requires its inputs to be divisible by 128\n",
"image_size = 384\n",
"train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=image_size, presize=512), tfms.A.Normalize()])\n",
"valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(image_size), tfms.A.Normalize()])\n",
"# Datasets\n",
"train_ds = Dataset(train_records, train_tfms)\n",
"valid_ds = Dataset(valid_records, valid_tfms)\n",
"# Data Loaders\n",
"train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True)\n",
"valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False)\n",
"metrics = [COCOMetric(metric_type=COCOMetricType.bbox)]\n",
"learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7bddb248-215d-4998-9d90-14ea6989c236",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/dnth/anaconda3/envs/icevision-gradio/lib/python3.8/site-packages/fastai/learner.py:56: UserWarning: Saved filed doesn't contain an optimizer state.\n",
" elif with_opt: warn(\"Saved filed doesn't contain an optimizer state.\")\n"
]
}
],
"source": [
"learn = learn.load('model')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "745315f6-8aa5-486e-a7bc-e11348bec6a6",
"metadata": {},
"outputs": [],
"source": [
"def show_preds(input_image, display_label, display_bbox, detection_threshold):\n",
"\n",
" if detection_threshold==0: detection_threshold=0.5\n",
"\n",
" img = PIL.Image.fromarray(input_image, 'RGB')\n",
"\n",
" pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold,\n",
" display_label=display_label, display_bbox=display_bbox, return_img=True, \n",
" font_size=16, label_color=\"#FF59D6\")\n",
"\n",
" return pred_dict['img']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63ac7fab-2068-4dbc-a464-0551b6fc12b2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860/\n",
"Running on public URL: https://11839.gradio.app\n",
"\n",
"This share link will expire in 72 hours. To get longer links, send an email to: support@gradio.app\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/dnth/anaconda3/envs/icevision-gradio/lib/python3.8/site-packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2157.)\n",
" return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"
]
}
],
"source": [
"# display_chkbox = gr.inputs.CheckboxGroup([\"Label\", \"BBox\"], label=\"Display\", default=True)\n",
"display_chkbox_label = gr.inputs.Checkbox(label=\"Label\", default=True)\n",
"display_chkbox_box = gr.inputs.Checkbox(label=\"Box\", default=True)\n",
"\n",
"detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label=\"Detection Threshold\")\n",
"\n",
"outputs = gr.outputs.Image(type=\"pil\")\n",
"\n",
"# Option 1: Get an image from local drive\n",
"gr_interface = gr.Interface(fn=show_preds, inputs=[\"image\", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO')\n",
"\n",
"# # Option 2: Grab an image from a webcam\n",
"# gr_interface = gr.Interface(fn=show_preds, inputs=[\"webcam\", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False)\n",
"\n",
"# # Option 3: Continuous image stream from the webcam\n",
"# gr_interface = gr.Interface(fn=show_preds, inputs=[\"webcam\", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True)\n",
"\n",
"\n",
"gr_interface.launch(inline=False, share=True, debug=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "727a3589-364b-4bfd-9c32-bef5ebe34dbe",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|