Spaces:
Runtime error
Runtime error
from icevision.all import * | |
import icedata | |
import PIL, requests | |
import torch | |
from torchvision import transforms | |
import gradio as gr | |
# Download the dataset | |
url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip" | |
dest_dir = "fridge" | |
data_dir = icedata.load_data(url, dest_dir) | |
# Create the parser | |
parser = parsers.VOCBBoxParser(annotations_dir=data_dir / "odFridgeObjects/annotations", images_dir=data_dir / "odFridgeObjects/images") | |
# Parse annotations to create records | |
train_records, valid_records = parser.parse() | |
class_map = parser.class_map | |
extra_args = {} | |
model_type = models.torchvision.retinanet | |
backbone = model_type.backbones.resnet50_fpn | |
# Instantiate the model | |
model = model_type.model(backbone=backbone(pretrained=True), num_classes=len(parser.class_map), **extra_args) | |
# Transforms | |
# size is set to 384 because EfficientDet requires its inputs to be divisible by 128 | |
image_size = 384 | |
train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=image_size, presize=512), tfms.A.Normalize()]) | |
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(image_size), tfms.A.Normalize()]) | |
# Datasets | |
train_ds = Dataset(train_records, train_tfms) | |
valid_ds = Dataset(valid_records, valid_tfms) | |
# Data Loaders | |
train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True) | |
valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False) | |
metrics = [COCOMetric(metric_type=COCOMetricType.bbox)] | |
learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics) | |
learn = learn.load('model') | |
import os | |
for root, dirs, files in os.walk(r'sample_images/'): | |
for filename in files: | |
print(filename) | |
examples = ["sample_images/"+file for file in files] | |
article="<p style='text-align: center'><a href='https://dicksonneoh.com/fridge-detector/' target='_blank'>Blog post</a></p>" | |
enable_queue=True | |
#examples = [['sample_images/3.jpg']] | |
examples = [["sample_images/"+file] for file in files] | |
def show_preds(input_image, display_label, display_bbox, detection_threshold): | |
if detection_threshold==0: detection_threshold=0.5 | |
img = PIL.Image.fromarray(input_image, 'RGB') | |
pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold, | |
display_label=display_label, display_bbox=display_bbox, return_img=True, | |
font_size=16, label_color="#FF59D6") | |
return pred_dict['img'] | |
# display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True) | |
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True) | |
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) | |
detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold") | |
outputs = gr.outputs.Image(type="pil") | |
# Option 1: Get an image from local drive | |
gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - Fridge Object', article=article, examples=examples) | |
# # Option 2: Grab an image from a webcam | |
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False) | |
# # Option 3: Continuous image stream from the webcam | |
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True) | |
gr_interface.launch(inline=False, share=False, debug=True) | |