Spaces:
Runtime error
Runtime error
try cv2import only
Browse files
app.py
CHANGED
@@ -1,73 +1,74 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
|
|
7 |
|
8 |
-
# Download the dataset
|
9 |
-
url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip"
|
10 |
-
dest_dir = "fridge"
|
11 |
-
data_dir = icedata.load_data(url, dest_dir)
|
12 |
|
13 |
-
# Create the parser
|
14 |
-
parser = parsers.VOCBBoxParser(annotations_dir=data_dir / "odFridgeObjects/annotations", images_dir=data_dir / "odFridgeObjects/images")
|
15 |
|
16 |
-
# Parse annotations to create records
|
17 |
-
train_records, valid_records = parser.parse()
|
18 |
|
19 |
-
class_map = parser.class_map
|
20 |
|
21 |
-
extra_args = {}
|
22 |
-
model_type = models.torchvision.retinanet
|
23 |
-
backbone = model_type.backbones.resnet50_fpn
|
24 |
-
# Instantiate the model
|
25 |
-
model = model_type.model(backbone=backbone(pretrained=True), num_classes=len(parser.class_map), **extra_args)
|
26 |
|
27 |
-
# Transforms
|
28 |
-
# size is set to 384 because EfficientDet requires its inputs to be divisible by 128
|
29 |
-
image_size = 384
|
30 |
-
train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=image_size, presize=512), tfms.A.Normalize()])
|
31 |
-
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(image_size), tfms.A.Normalize()])
|
32 |
-
# Datasets
|
33 |
-
train_ds = Dataset(train_records, train_tfms)
|
34 |
-
valid_ds = Dataset(valid_records, valid_tfms)
|
35 |
-
# Data Loaders
|
36 |
-
train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True)
|
37 |
-
valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False)
|
38 |
-
metrics = [COCOMetric(metric_type=COCOMetricType.bbox)]
|
39 |
-
learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics)
|
40 |
|
41 |
-
learn = learn.load('model')
|
42 |
|
43 |
-
def show_preds(input_image, display_label, display_bbox, detection_threshold):
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
|
55 |
-
# display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True)
|
56 |
-
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True)
|
57 |
-
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True)
|
58 |
|
59 |
-
detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold")
|
60 |
|
61 |
-
outputs = gr.outputs.Image(type="pil")
|
62 |
|
63 |
-
# Option 1: Get an image from local drive
|
64 |
-
gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - Fridge Object')
|
65 |
|
66 |
-
# # Option 2: Grab an image from a webcam
|
67 |
-
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False)
|
68 |
|
69 |
-
# # Option 3: Continuous image stream from the webcam
|
70 |
-
# gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True)
|
71 |
|
72 |
|
73 |
-
gr_interface.launch(inline=False, share=True, debug=True)
|
|
|
1 |
+
import cv2
|
2 |
+
# from icevision.all import *
|
3 |
+
# import icedata
|
4 |
+
# import PIL, requests
|
5 |
+
# import torch
|
6 |
+
# from torchvision import transforms
|
7 |
+
# import gradio as gr
|
8 |
|
9 |
+
# # Download the dataset
|
10 |
+
# url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip"
|
11 |
+
# dest_dir = "fridge"
|
12 |
+
# data_dir = icedata.load_data(url, dest_dir)
|
13 |
|
14 |
+
# # Create the parser
|
15 |
+
# parser = parsers.VOCBBoxParser(annotations_dir=data_dir / "odFridgeObjects/annotations", images_dir=data_dir / "odFridgeObjects/images")
|
16 |
|
17 |
+
# # Parse annotations to create records
|
18 |
+
# train_records, valid_records = parser.parse()
|
19 |
|
20 |
+
# class_map = parser.class_map
|
21 |
|
22 |
+
# extra_args = {}
|
23 |
+
# model_type = models.torchvision.retinanet
|
24 |
+
# backbone = model_type.backbones.resnet50_fpn
|
25 |
+
# # Instantiate the model
|
26 |
+
# model = model_type.model(backbone=backbone(pretrained=True), num_classes=len(parser.class_map), **extra_args)
|
27 |
|
28 |
+
# # Transforms
|
29 |
+
# # size is set to 384 because EfficientDet requires its inputs to be divisible by 128
|
30 |
+
# image_size = 384
|
31 |
+
# train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=image_size, presize=512), tfms.A.Normalize()])
|
32 |
+
# valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(image_size), tfms.A.Normalize()])
|
33 |
+
# # Datasets
|
34 |
+
# train_ds = Dataset(train_records, train_tfms)
|
35 |
+
# valid_ds = Dataset(valid_records, valid_tfms)
|
36 |
+
# # Data Loaders
|
37 |
+
# train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True)
|
38 |
+
# valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False)
|
39 |
+
# metrics = [COCOMetric(metric_type=COCOMetricType.bbox)]
|
40 |
+
# learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics)
|
41 |
|
42 |
+
# learn = learn.load('model')
|
43 |
|
44 |
+
# def show_preds(input_image, display_label, display_bbox, detection_threshold):
|
45 |
|
46 |
+
# if detection_threshold==0: detection_threshold=0.5
|
47 |
|
48 |
+
# img = PIL.Image.fromarray(input_image, 'RGB')
|
49 |
|
50 |
+
# pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold,
|
51 |
+
# display_label=display_label, display_bbox=display_bbox, return_img=True,
|
52 |
+
# font_size=16, label_color="#FF59D6")
|
53 |
|
54 |
+
# return pred_dict['img']
|
55 |
|
56 |
+
# # display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True)
|
57 |
+
# display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True)
|
58 |
+
# display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True)
|
59 |
|
60 |
+
# detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold")
|
61 |
|
62 |
+
# outputs = gr.outputs.Image(type="pil")
|
63 |
|
64 |
+
# # Option 1: Get an image from local drive
|
65 |
+
# gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - Fridge Object')
|
66 |
|
67 |
+
# # # Option 2: Grab an image from a webcam
|
68 |
+
# # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False)
|
69 |
|
70 |
+
# # # Option 3: Continuous image stream from the webcam
|
71 |
+
# # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True)
|
72 |
|
73 |
|
74 |
+
# gr_interface.launch(inline=False, share=True, debug=True)
|