import cv2 # from icevision.all import * # import icedata # import PIL, requests # import torch # from torchvision import transforms # import gradio as gr # # Download the dataset # url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip" # dest_dir = "fridge" # data_dir = icedata.load_data(url, dest_dir) # # Create the parser # parser = parsers.VOCBBoxParser(annotations_dir=data_dir / "odFridgeObjects/annotations", images_dir=data_dir / "odFridgeObjects/images") # # Parse annotations to create records # train_records, valid_records = parser.parse() # class_map = parser.class_map # extra_args = {} # model_type = models.torchvision.retinanet # backbone = model_type.backbones.resnet50_fpn # # Instantiate the model # model = model_type.model(backbone=backbone(pretrained=True), num_classes=len(parser.class_map), **extra_args) # # Transforms # # size is set to 384 because EfficientDet requires its inputs to be divisible by 128 # image_size = 384 # train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=image_size, presize=512), tfms.A.Normalize()]) # valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(image_size), tfms.A.Normalize()]) # # Datasets # train_ds = Dataset(train_records, train_tfms) # valid_ds = Dataset(valid_records, valid_tfms) # # Data Loaders # train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True) # valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False) # metrics = [COCOMetric(metric_type=COCOMetricType.bbox)] # learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics) # learn = learn.load('model') # def show_preds(input_image, display_label, display_bbox, detection_threshold): # if detection_threshold==0: detection_threshold=0.5 # img = PIL.Image.fromarray(input_image, 'RGB') # pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=detection_threshold, # display_label=display_label, display_bbox=display_bbox, return_img=True, # font_size=16, label_color="#FF59D6") # return pred_dict['img'] # # display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True) # display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True) # display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True) # detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold") # outputs = gr.outputs.Image(type="pil") # # Option 1: Get an image from local drive # gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - Fridge Object') # # # Option 2: Grab an image from a webcam # # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=False) # # # Option 3: Continuous image stream from the webcam # # gr_interface = gr.Interface(fn=show_preds, inputs=["webcam", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, title='IceApp - COCO', live=True) # gr_interface.launch(inline=False, share=True, debug=True)