import gradio as gr title = "ALBERT" description = "Gradio Demo for ALBERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

" examples = [ ['Paris is the [MASK] of France.','albert-base-v1'] ] io1 = gr.Interface.load("huggingface/albert-base-v1") io2 = gr.Interface.load("huggingface/albert-base-v2") def inference(inputtext, model): if model == "albert-base-v1": outlabel = io1(inputtext) else: outlabel = io2(inputtext) return outlabel gr.Interface( inference, [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["albert-base-v1","albert-base-v2"], type="value", default="albert-base-v1", label="model")], [gr.outputs.Label(label="Output")], examples=examples, article=article, title=title, description=description).launch(enable_queue=True,cache_examples=True)