Spaces:
Running
Running
from transformers import pipeline, set_seed | |
import gradio as grad | |
import random | |
import re | |
gpt2_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator') | |
with open("name.txt", "r") as f: | |
line = f.readlines() | |
def generate(starting_text): | |
seed = random.randint(1, 100000) | |
set_seed(seed) | |
# If the text field is empty | |
if starting_text == "": | |
starting_text: str = line[random.randrange(0, len(line))].replace("\n", "") | |
starting_text: str = re.sub(r"[,:\-β.!;?_]", '', starting_text) | |
print(starting_text) | |
response = gpt2_pipe(starting_text, max_length=random.randint(20, 45), num_return_sequences=random.randint(5, 15)) | |
response_list = [] | |
for x in response: | |
if x['generated_text'].strip() != starting_text: | |
response_list.append(x['generated_text']) | |
response_end = "\n".join(response_list) | |
return response_end | |
txt = grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
out = grad.Textbox(lines=5, label="Generated Text") | |
grad.Interface(fn=generate, | |
inputs=txt, | |
outputs=out, | |
allow_flagging='never', | |
cache_examples=False, | |
theme="default").launch(enable_queue=True, debug=True) | |