beat_manipulator / BeatManipulator.py
3v324v23's picture
it would seem that a new update has been uploaded, and that would, in fact, be true, should the truth of that be evaluated. Best regards, Remington (big ounce passed away)
fe806b7
raw
history blame
37.7 kB
import numpy
numpy.set_printoptions(suppress=True)
def open_audio(filename=None, lib='auto'):
if filename is None:
from tkinter.filedialog import askopenfilename
filename = askopenfilename(title='select song', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")])
filename=filename.replace('\\', '/')
if lib=='pedalboard.io':
from pedalboard.io import AudioFile
with AudioFile(filename) as f:
audio = f.read(f.frames)
samplerate = f.samplerate
elif lib=='librosa':
import librosa
audio, samplerate = librosa.load(filename, sr=None, mono=False)
elif lib=='soundfile':
import soundfile
audio, samplerate = soundfile.read(filename)
audio=audio.T
elif lib=='madmom':
import madmom
audio, samplerate = madmom.io.audio.load_audio_file(filename, dtype=float)
audio=audio.T
# elif lib=='pydub':
# from pydub import AudioSegment
# song=AudioSegment.from_file(filename)
# audio = song.get_array_of_samples()
# samplerate=song.frame_rate
# print(audio)
# print(filename)
elif lib=='auto':
for i in ('madmom', 'soundfile', 'librosa', 'pedalboard.io'):
try:
audio,samplerate=open_audio(filename, i)
break
except Exception as e:
print(e)
if len(audio)<2: audio=[audio,audio]
return audio,samplerate
def generate_sidechain(samplerate=44100, length=0.5, curve=2, vol0=0, vol1=1, smoothing=40) ->numpy.array:
x=numpy.concatenate((numpy.linspace(1,0,smoothing),numpy.linspace(vol0,vol1,int(length*samplerate))**curve))
return(x,x)
def outputfilename(output, filename, suffix='_beatswap'):
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
return output+''.join(''.join(filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
def generate_sine(len, freq, samplerate, volume=1):
return numpy.sin(numpy.linspace(0, freq*3.1415926*2*len, int(len*samplerate)))*volume
def generate_saw(len, freq, samplerate, volume=1):
return (numpy.linspace(0, freq*2*len, int(len*samplerate))%2 - 1)*volume
def generate_square(len, freq, samplerate, volume=1):
return ((numpy.linspace(0, freq*2*len, int(len*samplerate)))//1%2 * 2 - 1)*volume
class song:
def __init__(self, filename:str=None, audio:numpy.array=None, samplerate:int=None, beatmap:list=None):
"""song can be loaded from path to an audio file, or from a list/numpy array and samplerate. Audio array should have values from -1 to 1, multiple channels should be stacked vertically. Optionally you can provide your own beat map."""
if filename is None:
from tkinter.filedialog import askopenfilename
self.filename = askopenfilename(title='select song', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")])
self.audio, self.samplerate=open_audio(self.filename)
else:
self.filename=filename
if audio is None or samplerate is None:
self.audio, self.samplerate=open_audio(self.filename)
else: self.audio, self.samplerate = audio, samplerate
self.beatmap=beatmap
self.filename=self.filename.replace('\\', '/')
self.samplerate=int(self.samplerate)
def write_audio(self, output:str, lib:str='auto'):
""""writes audio"""
if lib=='pedalboard.io':
if not isinstance(self.audio,numpy.ndarray): self.audio=numpy.asarray(self.audio)
#print(audio)
from pedalboard.io import AudioFile
with AudioFile(output, 'w', self.samplerate, self.audio.shape[0]) as f:
f.write(self.audio)
elif lib=='soundfile':
if not isinstance(self.audio,numpy.ndarray): self.audio=numpy.asarray(self.audio)
audio=self.audio.T
import soundfile
soundfile.write(output, audio, self.samplerate)
del audio
elif lib=='auto':
for i in ('pedalboard.io', 'soundfile'):
try:
song.write_audio(self, output, i)
break
except Exception as e:
print(e)
# elif lib=='pydub':
# from pydub import AudioSegment
# song = AudioSegment(self.audio.tobytes(), frame_rate=self.samplerate, sample_width=2, channels=2)
# format = output.split('.')[-1]
# if len(format) > 4:
# format='mp3'
# output = output + '.' + format
# song.export(output, format=format)
def beatmap_scale(self, scale:float):
import math
if scale!=1:
a=0
b=numpy.array([])
while a <len( self.beatmap[:-math.ceil(scale)]):
b=numpy.append(b, (1-(a%1))*self.beatmap[math.floor(a)]+(a%1)*self.beatmap[math.ceil(a)])
a+=scale
self.beatmap=b
def analyze_beats(self, lib='madmom.BeatDetectionProcessor', caching=True, split=None):
#if audio is None and filename is None: (audio, samplerate) = open_audio()
if caching is True:
id=hex(len(self.audio[0]))
import os
if not os.path.exists('SavedBeatmaps'):
os.mkdir('SavedBeatmaps')
cacheDir="SavedBeatmaps/" + ''.join(self.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt'
try:
self.beatmap=numpy.loadtxt(cacheDir, dtype=int)
self.bpm=numpy.average(self.beatmap)/self.samplerate
return
except OSError: pass
if lib.split('.')[0]=='madmom':
from collections.abc import MutableMapping, MutableSequence
import madmom
if lib=='madmom.BeatTrackingProcessor':
proc = madmom.features.beats.BeatTrackingProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
if lib=='madmom.BeatTrackingProcessor.constant':
proc = madmom.features.beats.BeatTrackingProcessor(fps=100, look_ahead=None)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
if lib=='madmom.BeatTrackingProcessor.consistent':
proc = madmom.features.beats.BeatTrackingProcessor(fps=100, look_ahead=None, look_aside=0)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.BeatDetectionProcessor':
proc = madmom.features.beats.BeatDetectionProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.BeatDetectionProcessor.consistent':
proc = madmom.features.beats.BeatDetectionProcessor(fps=100, look_aside=0)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.CRFBeatDetectionProcessor':
proc = madmom.features.beats.CRFBeatDetectionProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.CRFBeatDetectionProcessor.constant':
proc = madmom.features.beats.CRFBeatDetectionProcessor(fps=100, use_factors=True, factors=[0.5, 1, 2])
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.DBNBeatTrackingProcessor':
proc = madmom.features.beats.DBNBeatTrackingProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.DBNBeatTrackingProcessor.1000':
proc = madmom.features.beats.DBNBeatTrackingProcessor(fps=100, transition_lambda=1000)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.MultiModelSelectionProcessor': #broken
proc = madmom.features.beats.RNNBeatProcessor(post_processor=None)
predictions = proc(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
mm_proc = madmom.features.beats.MultiModelSelectionProcessor(num_ref_predictions=None)
self.beatmap= numpy.sort(mm_proc(predictions)*self.samplerate)
elif lib=='madmom.DBNDownBeatTrackingProcessor':
proc = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[4], fps=100)
act = madmom.features.downbeats.RNNDownBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
self.beatmap=self.beatmap[:,0]
elif lib=='madmom.PatternTrackingProcessor': #broken
from madmom.models import PATTERNS_BALLROOM
proc = madmom.features.downbeats.PatternTrackingProcessor(PATTERNS_BALLROOM, fps=50)
from madmom.audio.spectrogram import LogarithmicSpectrogramProcessor, SpectrogramDifferenceProcessor, MultiBandSpectrogramProcessor
from madmom.processors import SequentialProcessor
log = LogarithmicSpectrogramProcessor()
diff = SpectrogramDifferenceProcessor(positive_diffs=True)
mb = MultiBandSpectrogramProcessor(crossover_frequencies=[270])
pre_proc = SequentialProcessor([log, diff, mb])
act = pre_proc(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
self.beatmap=self.beatmap[:,0]
elif lib=='madmom.DBNBarTrackingProcessor': #broken
beats = song.analyze_beats(self,lib='madmom.DBNBeatTrackingProcessor', caching = caching)
proc = madmom.features.downbeats.DBNBarTrackingProcessor(beats_per_bar=[4], fps=100)
act = madmom.features.downbeats.RNNBarProcessor()(((madmom.audio.signal.Signal(self.audio.T, self.samplerate)), beats))
self.beatmap= proc(act)*self.samplerate
elif lib=='librosa': #broken in 3.9, works in 3.8
import librosa
beat_frames = librosa.beat.beat_track(y=self.audio[0], sr=self.samplerate,hop_length=512)
self.beatmap = librosa.frames_to_samples(beat_frames[1])
# elif lib=='BeatNet':
# from BeatNet.BeatNet import BeatNet # doesn't seem to work well for some reason
# estimator = BeatNet(1, mode='offline', inference_model='DBN', plot=[], thread=False)
# beatmap = estimator.process(filename)
# beatmap=beatmap[:,0]*samplerate
# elif lib=='jump-reward-inference': # doesn't seem to work well for some reason
# from jump_reward_inference.joint_tracker import joint_inference
# estimator = joint_inference(1, plot=False)
# beatmap = estimator.process(filename)
# beatmap=beatmap[:,0]*samplerate
elif lib=='split':
self.beatmap= list(range(0, len(self.audio), len(self.audio)//split))
if lib.split('.')[0]=='madmom':
self.beatmap=numpy.absolute(self.beatmap-500)
if caching is True: numpy.savetxt(cacheDir, self.beatmap.astype(int), fmt='%d')
self.bpm=numpy.average(self.beatmap)/self.samplerate
self.beatmap=self.beatmap.astype(int)
def audio_autotrim(self):
n=0
for i in self.audio[0]:
if i>=0.0001:break
n+=1
self.audio = numpy.asarray([self.audio[0,n:], self.audio[1,n:]])
#print(beatmap)
if self.beatmap is not None:
self.beatmap=numpy.absolute(self.beatmap-n)
else:
print('It is recommended to only use autotrim after computing the beatmap')
def beatmap_autoscale(self):
bpm=(self.beatmap[-1]-self.beatmap[0])/(len(self.beatmap)-1)
#print('BPM =', (bpm/samplerate) * 240, bpm)
if bpm>=160000: scale=1/8
elif (bpm)>=80000: scale=1/4
elif (bpm)>=40000: scale=1/2
elif (bpm)<=20000: scale=2
elif (bpm)<=10000: scale=4
elif (bpm)<=5000: scale=8
song.beatmap_scale(self,scale)
def beatmap_autoinsert(self):
diff=(self.beatmap[1]-self.beatmap[0])
a=0
while diff<self.beatmap[0] and a<100:
self.beatmap=numpy.insert(self.beatmap, 0, self.beatmap[0]-diff)
a+=1
def beatmap_shift(self, shift: float):
if shift>0:
for i in range(len(self.beatmap)-1):
self.beatmap[i] = self.beatmap[i] + shift * (self.beatmap[i+1] - self.beatmap[i])
elif shift<0:
for i in reversed(range(len(self.beatmap)-1)):
self.beatmap[i+1] = self.beatmap[i+1] - shift * (self.beatmap[i] - self.beatmap[i+1])
def beatmap_trim(self, start=0, end=None):
start*=self.samplerate
self.beatmap=self.beatmap[self.beatmap>=start].astype(int)
if end is not None: self.beatmap=self.beatmap[self.beatmap<=end].astype(int)
def beatswap(self, pattern: str, sep=',', smoothing=40, smoothing_mode='replace'):
import math, numpy
# get pattern size
size=0
#cut processing??? not worth it, it is really fast anyways
pattern=pattern.replace(' ', '').split(sep)
for j in pattern:
s=''
if '?' not in j:
for i in j:
if i.isdigit() or i=='.' or i=='-' or i=='/' or i=='+' or i=='%': s=str(s)+str(i)
elif i==':':
if s=='': s='0'
#print(s, eval(s))
size=max(math.ceil(float(eval(s))), size)
s=''
elif s!='': break
if s=='': s='0'
if s=='': s='0'
size=max(math.ceil(float(eval(s))), size)
if isinstance(self.audio,numpy.ndarray): self.audio=numpy.ndarray.tolist(self.audio)
if self.beatmap.dtype!='int32': self.beatmap=self.beatmap.astype(int)
#beat=[]
#start=audio[:beatmap[0]]
#end=audio[beatmap[-1]:audio[-1]]
#for i in range(len(beatmap)-1):
# beat[i]=audio[beatmap[i]:beatmap[i+1]]
# audio is a tuple with l and r channels
#print(len(audio))
self.audio=(self.audio[0], self.audio[1])
#print(beatmap[0], audio[0][100])
result=(self.audio[0][:self.beatmap[0]],self.audio[1][:self.beatmap[0]])
beat=numpy.asarray([[],[]])
# size, iterations are integers
size=int(max(size//1, 1))
# add beat to the end
self.beatmap=numpy.unique(numpy.abs(numpy.append(self.beatmap, len(self.audio[0]))))
iterations=int(len(self.beatmap)//size)
if 'random' in pattern[0].lower():
import random
for i in range(len(self.beatmap)):
choice=random.randint(1,len(self.beatmap)-1)
for a in range(len(self.audio)):
beat=self.audio[a][self.beatmap[choice-1]:self.beatmap[choice]-smoothing]
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[0],smoothing))
result[a].extend(beat)
self.audio = result
return
if 'reverse' in pattern[0].lower():
for a in range(len(self.audio)):
for i in list(reversed(range(len(self.beatmap))))[:-1]:
beat=self.audio[a][self.beatmap[i-1]:self.beatmap[i]-smoothing]
#print(self.beatmap[i-1],self.beatmap[i])
#print(result[a][-1], beat[0])
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[0],smoothing))
result[a].extend(beat)
self.audio = result
return
#print(len(result[0]))
def beatswap_getnum(i: str, c: str):
if c in i:
try:
x=i.index(c)+1
z=''
try:
while i[x].isdigit() or i[x]=='.' or i[x]=='-' or i[x]=='/' or i[x]=='+' or i[x]=='%':
z+=i[x]
x+=1
return z
except IndexError:
return z
except ValueError: return None
#print(len(self.beatmap), size, iterations)
# processing
for j in range(iterations+1):
for i in pattern:
if '!' not in i:
n,s,st,reverse,z=0,'',None,False,None
for c in i:
n+=1
#print('c =', s, ', st =', st, ', s =', s, ', n =,',n)
# Get the character
if c.isdigit() or c=='.' or c=='-' or c=='/' or c=='+' or c=='%':
s=str(s)+str(c)
# If character is : - get start
elif s!='' and c==':':
#print ('Beat start:',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1)
try: st=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
except IndexError: break
s=''
# create a beat
if s!='' and (n==len(i) or not(c.isdigit() or c=='.' or c=='-' or c=='/' or c=='+' or c=='%')):
# start already exists
if st is not None:
#print ('Beat end: ',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1)
try:
s=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
#print(s)
except IndexError: break
else:
# start doesn't exist
#print ('Beat start:',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,'- 1 =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1)
#print ('Beat end: ',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size+1, ', mod=',eval(s)%1)
try:
st=self.beatmap[int(eval(s)//1)+j*size-1 ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
s=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
except IndexError: break
if st>s:
s, st=st, s
reverse=True
# create the beat
if len(self.audio)>1:
if smoothing_mode=='add': beat=numpy.asarray([self.audio[0][int(st):int(s)],self.audio[1][int(st):int(s)]])
else: beat=numpy.asarray([self.audio[0][int(st):int(s)-smoothing],self.audio[1][int(st):int(s)-smoothing]])
else:
if smoothing_mode=='add': beat=numpy.asarray([self.audio[0][int(st):int(s)]])
else: beat=numpy.asarray([self.audio[0][int(st):int(s)-smoothing]])
# process the beat
# channels
z=beatswap_getnum(i,'c')
if z is not None:
if z=='': beat[0],beat[1]=beat[1],beat[0]
elif eval(z)==0:beat[0]*=0
else:beat[1]*=0
# volume
z=beatswap_getnum(i,'v')
if z is not None:
if z=='': z='0'
beat*=eval(z)
z=beatswap_getnum(i,'t')
if z is not None:
if z=='': z='2'
beat**=1/eval(z)
# speed
z=beatswap_getnum(i,'s')
if z is not None:
if z=='': z='2'
z=eval(z)
if z<1:
beat=numpy.asarray((numpy.repeat(beat[0],int(1//z)),numpy.repeat(beat[1],int(1//z))))
else:
beat=numpy.asarray((beat[0,::int(z)],beat[1,::int(z)]))
# bitcrush
z=beatswap_getnum(i,'b')
if z is not None:
if z=='': z='3'
z=1/eval(z)
if z<1: beat=beat*z
beat=numpy.around(beat, max(int(z), 1))
if z<1: beat=beat/z
# downsample
z=beatswap_getnum(i,'d')
if z is not None:
if z=='': z='3'
z=int(eval(z))
beat=numpy.asarray((numpy.repeat(beat[0,::z],z),numpy.repeat(beat[1,::z],z)))
# convert to list
beat=beat.tolist()
# effects with list
# reverse
if ('r' in i and reverse is False) or (reverse is True and 'r' not in i):
beat=(beat[0][::-1],beat[1][::-1] )
# add beat to the result
for a in range(len(self.audio)):
#print('Adding beat... a, s, st:', a, s, st, sep=', ')
#print(result[a][-1])
#print(beat[a][0])
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[a][0],smoothing))
result[a].extend(beat[a])
#print(len(result[0]))
#
break
#print(time.process_time() - benchmark)
self.audio = result
def beatsample(self, audio2, shift=0):
try: l=len(audio2[0])
except (TypeError, IndexError):
l=len(audio2)
audio2=numpy.vstack((audio2,audio2))
for i in range(len(self.beatmap)):
try: self.audio[:,int(self.beatmap[i]) + int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i]))) : int(self.beatmap[i])+int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i])))+int(l)]+=audio2
except (IndexError, ValueError): pass
def sidechain(self, audio2, shift=0, smoothing=40):
try: l=len(audio2[0])
except (TypeError, IndexError):
l=len(audio2)
audio2=numpy.vstack((audio2,audio2))
for i in range(len(self.beatmap)):
try: self.audio[:,int(self.beatmap[i])-smoothing + int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i]))) : int(self.beatmap[i])-smoothing+int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i])))+int(l)]*=audio2
except (IndexError, ValueError): break
def quick_beatswap(self, output:str='', pattern:str=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, suffix:str='_BeatSwap', lib:str='madmom.BeatDetectionProcessor'):
"""Generates beatmap if it isn't generated, applies beatswapping to the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used.
pattern: the beatswapping pattern.
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5.
shift: shifts the beatmap by this amount of unscaled beats
start: position in seconds, beats before the position will not be manipulated
end: position in seconds, same. Set to None by default.
autotrim: trims silence in the beginning for better beat detection, True by default
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default.
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift.
suffix: suffix that will be appended to the filename
lib: beat detection library"""
if self.beatmap is None: song.analyze_beats(self,lib=lib)
if autotrim is True: song.audio_autotrim(self)
save=self.beatmap
if autoscale is True: song.beatmap_autoscale(self)
if shift!=0: song.beatmap_shift(self,shift)
if scale!=1: song.beatmap_scale(self,scale)
if autoinsert is True: song.beatmap_autoinsert(self)
if start!=0 or end is not None: song.beatmap_trim(self,start, end)
song.beatswap(self,pattern)
if output is not None:
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
song.write_audio(self,output)
self.beatmap=save
def quick_sidechain(self, output:str='', audio2:numpy.array=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, filename2:str=None, suffix:str='_Sidechain', lib:str='madmom.BeatDetectionProcessor'):
"""Generates beatmap if it isn't generated, applies fake sidechain on each beat to the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used.
audio2: sidechain impulse, basically a curve that the volume will be multiplied by. By default one will be generated with generate_sidechain()
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5.
shift: shifts the beatmap by this amount of unscaled beats
start: position in seconds, beats before the position will not be manipulated
end: position in seconds, same. Set to None by default.
autotrim: trims silence in the beginning for better beat detection, True by default
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default.
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift.
filename2: loads sidechain impulse from the file if audio2 if not specified
suffix: suffix that will be appended to the filename
lib: beat detection library"""
if filename2 is None and audio2 is None:
audio2=generate_sidechain()
if audio2 is None:
audio2, samplerate2=open_audio(filename2)
if self.beatmap is None: song.analyze_beats(self,lib=lib)
if autotrim is True: song.audio_autotrim(self)
save=self.beatmap
if autoscale is True: song.beatmap_autoscale(self)
if shift!=0: song.beatmap_shift(self,shift)
if scale!=1: song.beatmap_scale(self,scale)
if autoinsert is True: song.beatmap_autoinsert(self)
if start!=0 or end is not None: song.beatmap_trim(self,start, end)
song.sidechain(self,audio2)
if output is not None:
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
song.write_audio(self,output)
self.beatmap=save
def quick_beatsample(self, output:str='', filename2:str=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, audio2:numpy.array=None, suffix:str='_BeatSample', lib:str='madmom.BeatDetectionProcessor'):
"""Generates beatmap if it isn't generated, adds chosen sample to each beat of the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used.
filename2: path to the sample.
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5.
shift: shifts the beatmap by this amount of unscaled beats
start: position in seconds, beats before the position will not be manipulated
end: position in seconds, same. Set to None by default.
autotrim: trims silence in the beginning for better beat detection, True by default
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default.
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift.
suffix: suffix that will be appended to the filename
lib: beat detection library"""
if filename2 is None and audio2 is None:
from tkinter.filedialog import askopenfilename
filename2 = askopenfilename(title='select sidechain impulse', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")])
if audio2 is None:
audio2, samplerate2=open_audio(filename2)
if self.beatmap is None: song.analyze_beats(self,lib=lib)
if autotrim is True: song.audio_autotrim(self)
save=numpy.copy(self.beatmap)
if autoscale is True: song.beatmap_autoscale(self)
if shift!=0: song.beatmap_shift(self,shift)
if scale!=1: song.beatmap_scale(self,scale)
if autoinsert is True: song.beatmap_autoinsert(self)
if start!=0 or end is not None: song.beatmap_trim(self,start, end)
song.beatsample(self,audio2)
if output is not None:
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
song.write_audio(self,output)
self.beatmap=save
def audio_spectogram(self, hop_length:int=512):
self.hop_length=hop_length
import librosa
self.spectogram=librosa.feature.melspectrogram(y=self.audio, sr=self.samplerate, hop_length=hop_length)
def spectogram_audio(self):
import librosa
self.audio=librosa.feature.inverse.mel_to_audio(M=numpy.swapaxes(numpy.swapaxes(numpy.dstack(( self.spectogram[0,:,:], self.spectogram[1,:,:])), 0, 2), 1,2), sr=self.samplerate, hop_length=self.hop_length)
def write_image(self):
"""Turns song into an image based on beat positions. Currently semi-broken"""
import cv2
audio=self.audio[0].tolist()
height=len(audio)/len(self.beatmap)
width=len(self.beatmap)
height*=3
if height>width:
increase_length=int(height/width)
reduce_width=1
else:
reduce_width=int(width/height)
increase_length=1
increase_length/=10
reduce_width*=10
image=[audio[0:self.beatmap[0]]]
maximum=len(image)
for i in range(len(self.beatmap)-1):
image.append(audio[self.beatmap[i]:self.beatmap[i+1]])
maximum=max(maximum,len(image[i]))
for i in range(len(image)):
image[i].extend((maximum-len(image[i]))*[0])
image[i]=image[i][::reduce_width]
audio=self.audio[1].tolist()
image2=[audio[0:self.beatmap[0]]]
for i in range(len(self.beatmap)-1):
image2.append(audio[self.beatmap[i]:self.beatmap[i+1]])
for i in range(len(image2)):
image2[i].extend((maximum-len(image2[i]))*[0])
image2[i]=image2[i][::reduce_width]
print(len(image[i]), len(image2[i]))
image=numpy.asarray(image)*255
image2=numpy.asarray(image2)*255
image3=numpy.add(image, image2)/2
image,image2,image3=numpy.repeat(image,increase_length,axis=0),numpy.repeat(image2,increase_length,axis=0),numpy.repeat(image3,increase_length,axis=0)
image=cv2.merge([image.T,image2.T, image3.T])
#image=image.astype('uint8')
#image=cv2.resize(image, (0,0), fx=len(image))
cv2.imwrite('cv2_output.png', image)
def fix_beatmap(filename, lib='madmom.BeatDetectionProcessor', scale=1, shift=0):
track=song(filename)
track.analyze_beats(lib=lib)
track.beatmap_shift(shift)
track.beatmap_scale(scale)
id=hex(len(track.audio[0]))
import os
if not os.path.exists('SavedBeatmaps'):
os.mkdir('SavedBeatmaps')
cacheDir="SavedBeatmaps/" + ''.join(track.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt'
a=input(f'Are you sure you want to overwrite {cacheDir} using scale = {scale}; shift = {shift}? ("n" to cancel): ')
if 'n' in a.lower(): return
else: numpy.savetxt(cacheDir, track.beatmap.astype(int), fmt='%d')
def delete_beatmap(filename, lib='madmom.BeatDetectionProcessor'):
track=open_audio(filename)[0]
id=hex(len(track.audio[0]))
import os
if not os.path.exists('SavedBeatmaps'):
os.mkdir('SavedBeatmaps')
cacheDir="SavedBeatmaps/" + ''.join(track.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt'
a=input(f'Are you sure you want to delete {cacheDir}? ("n" to cancel): ')
if 'n' in a.lower(): return
else: os.remove(cacheDir)