File size: 9,620 Bytes
bfa34a7
 
 
8430798
bfa34a7
8716e2c
f03abd6
a83dd2c
 
48164a9
 
 
 
 
bf23921
 
48164a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83dd2c
 
f03abd6
 
 
 
 
 
 
 
 
a83dd2c
 
 
 
 
 
f03abd6
a83dd2c
f03abd6
a83dd2c
 
 
 
 
 
5b1444b
48164a9
5b1444b
a83dd2c
 
 
f03abd6
5b1444b
f03abd6
a83dd2c
f03abd6
a83dd2c
 
 
 
f03abd6
81f078c
f03abd6
 
 
 
 
 
 
 
48164a9
 
 
 
 
6c7ac21
f03abd6
 
 
6c7ac21
f03abd6
48164a9
f03abd6
48164a9
f03abd6
5b1444b
 
 
f03abd6
 
423c874
 
 
f03abd6
48164a9
559380b
1026a38
 
 
 
 
 
a83dd2c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
try:
    import detectron2
except:
    import os
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

import os
import streamlit as st
from PIL import Image
from matplotlib.pyplot import axis
import requests
import numpy as np
from torch import nn
import requests
from annotated_text import annotated_text
from streamlit_option_menu import option_menu
import torch
import detectron2
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode

damage_model_path = 'model_final_damage.pth'
scratch_model_path = 'model_final_scratch.pth'
parts_model_path = 'model_final_parts.pth'

if torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'

cfg_scratches = get_cfg()
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
cfg_scratches.MODEL.DEVICE = device

predictor_scratches = DefaultPredictor(cfg_scratches)

metadata_scratch = MetadataCatalog.get("car_dataset_val")
metadata_scratch.thing_classes = ["scratch"]

cfg_damage = get_cfg()
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_damage.MODEL.WEIGHTS = damage_model_path
cfg_damage.MODEL.DEVICE = device

predictor_damage = DefaultPredictor(cfg_damage)

metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
metadata_damage.thing_classes = ["damage"]

cfg_parts = get_cfg()
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
cfg_parts.MODEL.WEIGHTS = parts_model_path
cfg_parts.MODEL.DEVICE = device

predictor_parts = DefaultPredictor(cfg_parts)

metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
metadata_parts.thing_classes = ['_background_',
 'back_bumper',
 'back_glass',
 'back_left_door',
 'back_left_light',
 'back_right_door',
 'back_right_light',
 'front_bumper',
 'front_glass',
 'front_left_door',
 'front_left_light',
 'front_right_door',
 'front_right_light',
 'hood',
 'left_mirror',
 'right_mirror',
 'tailgate',
 'trunk',
 'wheel']

def merge_segment(pred_segm):
    merge_dict = {}
    for i in range(len(pred_segm)):
        merge_dict[i] = []
        for j in range(i+1,len(pred_segm)):
            if torch.sum(pred_segm[i]*pred_segm[j])>0:
                merge_dict[i].append(j)
    
    to_delete = []
    for key in merge_dict:
        for element in merge_dict[key]:
            to_delete.append(element)
    
    for element in to_delete:
        merge_dict.pop(element,None)
        
    empty_delete = []
    for key in merge_dict:
        if merge_dict[key] == []:
            empty_delete.append(key)
    
    for element in empty_delete:
        merge_dict.pop(element,None)
        
    for key in merge_dict:
        for element in merge_dict[key]:
            pred_segm[key]+=pred_segm[element]
            
    except_elem = list(set(to_delete))
    
    new_indexes = list(range(len(pred_segm)))
    for elem in except_elem:
        new_indexes.remove(elem)
        
    return pred_segm[new_indexes]

def inference(image):
    img = np.array(image)
    outputs_damage = predictor_damage(img)
    outputs_parts = predictor_parts(img)
    outputs_scratch = predictor_scratches(img)
    out_dict = outputs_damage["instances"].to("cpu").get_fields()
    merged_damage_masks = merge_segment(out_dict['pred_masks'])
    scratch_data = outputs_scratch["instances"].get_fields()
    scratch_masks = scratch_data['pred_masks']
    damage_data = outputs_damage["instances"].get_fields()
    damage_masks = damage_data['pred_masks']
    parts_data = outputs_parts["instances"].get_fields()
    parts_masks = parts_data['pred_masks']
    parts_classes = parts_data['pred_classes']
    new_inst = detectron2.structures.Instances((1024,1024))
    new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
    
    parts_damage_dict = {}
    parts_list_damages = []
    for part in parts_classes:
        parts_damage_dict[metadata_parts.thing_classes[part]] = []
    for mask in scratch_masks:
        for i in range(len(parts_masks)):
            if torch.sum(parts_masks[i]*mask)>0:
                parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
                parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')              
                print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
    for mask in merged_damage_masks:
        for i in range(len(parts_masks)):
            if torch.sum(parts_masks[i]*mask)>0:
                parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
                parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
                print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')

    v_d = Visualizer(img[:, :, ::-1],
                   metadata=metadata_damage, 
                   scale=0.5, 
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    #v_d = Visualizer(img,scale=1.2)
    #print(outputs["instances"].to('cpu'))
    out_d = v_d.draw_instance_predictions(new_inst)
    img1 = out_d.get_image()[:, :, ::-1]

    v_s = Visualizer(img[:, :, ::-1],
                   metadata=metadata_scratch, 
                   scale=0.5, 
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    #v_s = Visualizer(img,scale=1.2)
    out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
    img2 = out_s.get_image()[:, :, ::-1]

    v_p = Visualizer(img[:, :, ::-1],
                   metadata=metadata_parts, 
                   scale=0.5, 
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    #v_p = Visualizer(img,scale=1.2)
    out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
    img3 = out_p.get_image()[:, :, ::-1]
    
    return img1, img2, img3, parts_list_damages

def main():
    st.set_page_config(layout="wide")
    c1, c2 = st.columns((1, 1))
    c2.markdown("<br><br><br><br><br><br><br><br><br><br><br><br>", unsafe_allow_html=True)

    tab1, tab2, tab3, tab4 = c2.tabs(["Image of damages", "Image of scratches", "Image of parts", "Information about damages parts"])

    # Replace '20px' with your desired font size
    font_size = '20px'

    hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """

    st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    c1.title('ITACA Insurance Core AI Module')

    with st.sidebar:
        image = Image.open('itaca_logo.png')
        st.image(image, width=150) #,use_column_width=True)
        page = option_menu(menu_title='Menu',
                        menu_icon="robot",
                        options=["Damage Detection",
                                    "Under Construction"],
                        icons=["camera",
                                "key"],
                        default_index=0
                        )
  
    if page == "Damage Detection":
        c1.header('Car Parts Damage Detection')

        c1.write(
            """
            """
        )

        # Display the list of CSV files
        directory = "./"
        all_files = os.listdir(directory)
        # Filter files to only include JPG files
        jpg_files = [file for file in all_files if file.endswith((".jpg"))]

        # Select an image file from the list
        selected_jpg = c1.selectbox("Select a JPG file from the list", ["None"] + jpg_files)

        uploaded_file = c1.file_uploader("Upload an image:")

        # Check if a file has been uploaded
        if uploaded_file is not None:
            # Load and display the image
            image = Image.open(uploaded_file)
            c1.image(image, width=450, caption="Uploaded image")

        elif selected_jpg != 'None':
            image = Image.open(selected_jpg)
            c1.image(image, width=450, caption="Uploaded image")

        else:
            c1.write("Please upload an image.")

        if c1.button("Prediction"):
            with st.spinner("Loading..."):
                imagen1, imagen2, imagen3, partes = inference(image)
        
                c2.markdown("<br><br><br><br><br><br><br><br><br><br><br><br><br><br>", unsafe_allow_html=True)

                tab1.image(imagen1, width=450)
                tab2.image(imagen2, width=450)
                tab3.image(imagen3, width=450)
                tab4.table(partes)

    elif page == "Under Construction":
        st.header('Under Construction')
        
        st.write(
            """
            """
        )

try:
    main()
except Exception as e:
    st.sidebar.error(f"An error occurred: {e}")