try: import detectron2 except: import os os.system('pip install git+https://github.com/facebookresearch/detectron2.git') import os import streamlit as st from PIL import Image from matplotlib.pyplot import axis import requests import numpy as np from torch import nn import requests from annotated_text import annotated_text from streamlit_option_menu import option_menu import torch import detectron2 from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog from detectron2.utils.visualizer import ColorMode damage_model_path = 'model_final_damage.pth' scratch_model_path = 'model_final_scratch.pth' parts_model_path = 'model_final_parts.pth' if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' cfg_scratches = get_cfg() cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8 cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1 cfg_scratches.MODEL.WEIGHTS = scratch_model_path cfg_scratches.MODEL.DEVICE = device predictor_scratches = DefaultPredictor(cfg_scratches) metadata_scratch = MetadataCatalog.get("car_dataset_val") metadata_scratch.thing_classes = ["scratch"] cfg_damage = get_cfg() cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1 cfg_damage.MODEL.WEIGHTS = damage_model_path cfg_damage.MODEL.DEVICE = device predictor_damage = DefaultPredictor(cfg_damage) metadata_damage = MetadataCatalog.get("car_damage_dataset_val") metadata_damage.thing_classes = ["damage"] cfg_parts = get_cfg() cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75 cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19 cfg_parts.MODEL.WEIGHTS = parts_model_path cfg_parts.MODEL.DEVICE = device predictor_parts = DefaultPredictor(cfg_parts) metadata_parts = MetadataCatalog.get("car_parts_dataset_val") metadata_parts.thing_classes = ['_background_', 'back_bumper', 'back_glass', 'back_left_door', 'back_left_light', 'back_right_door', 'back_right_light', 'front_bumper', 'front_glass', 'front_left_door', 'front_left_light', 'front_right_door', 'front_right_light', 'hood', 'left_mirror', 'right_mirror', 'tailgate', 'trunk', 'wheel'] def merge_segment(pred_segm): merge_dict = {} for i in range(len(pred_segm)): merge_dict[i] = [] for j in range(i+1,len(pred_segm)): if torch.sum(pred_segm[i]*pred_segm[j])>0: merge_dict[i].append(j) to_delete = [] for key in merge_dict: for element in merge_dict[key]: to_delete.append(element) for element in to_delete: merge_dict.pop(element,None) empty_delete = [] for key in merge_dict: if merge_dict[key] == []: empty_delete.append(key) for element in empty_delete: merge_dict.pop(element,None) for key in merge_dict: for element in merge_dict[key]: pred_segm[key]+=pred_segm[element] except_elem = list(set(to_delete)) new_indexes = list(range(len(pred_segm))) for elem in except_elem: new_indexes.remove(elem) return pred_segm[new_indexes] def inference(image): img = np.array(image) outputs_damage = predictor_damage(img) outputs_parts = predictor_parts(img) outputs_scratch = predictor_scratches(img) out_dict = outputs_damage["instances"].to("cpu").get_fields() merged_damage_masks = merge_segment(out_dict['pred_masks']) scratch_data = outputs_scratch["instances"].get_fields() scratch_masks = scratch_data['pred_masks'] damage_data = outputs_damage["instances"].get_fields() damage_masks = damage_data['pred_masks'] parts_data = outputs_parts["instances"].get_fields() parts_masks = parts_data['pred_masks'] parts_classes = parts_data['pred_classes'] new_inst = detectron2.structures.Instances((1024,1024)) new_inst.set('pred_masks',merge_segment(out_dict['pred_masks'])) parts_damage_dict = {} parts_list_damages = [] for part in parts_classes: parts_damage_dict[metadata_parts.thing_classes[part]] = [] for mask in scratch_masks: for i in range(len(parts_masks)): if torch.sum(parts_masks[i]*mask)>0: parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch') parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch') print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch') for mask in merged_damage_masks: for i in range(len(parts_masks)): if torch.sum(parts_masks[i]*mask)>0: parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage') parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage') print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage') v_d = Visualizer(img[:, :, ::-1], metadata=metadata_damage, scale=0.5, instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models ) #v_d = Visualizer(img,scale=1.2) #print(outputs["instances"].to('cpu')) out_d = v_d.draw_instance_predictions(new_inst) img1 = out_d.get_image()[:, :, ::-1] v_s = Visualizer(img[:, :, ::-1], metadata=metadata_scratch, scale=0.5, instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models ) #v_s = Visualizer(img,scale=1.2) out_s = v_s.draw_instance_predictions(outputs_scratch["instances"]) img2 = out_s.get_image()[:, :, ::-1] v_p = Visualizer(img[:, :, ::-1], metadata=metadata_parts, scale=0.5, instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models ) #v_p = Visualizer(img,scale=1.2) out_p = v_p.draw_instance_predictions(outputs_parts["instances"]) img3 = out_p.get_image()[:, :, ::-1] return img1, img2, img3, parts_list_damages def main(): st.set_page_config(layout="wide") c1, c2 = st.columns((1, 1)) c2.markdown("











", unsafe_allow_html=True) tab1, tab2, tab3, tab4 = c2.tabs(["Image of damages", "Image of scratches", "Image of parts", "Information about damages parts"]) # Replace '20px' with your desired font size font_size = '20px' hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) c1.title('atmira Insurance Core AI Module') with st.sidebar: image = Image.open('itaca_logo.png') st.image(image, width=150) #,use_column_width=True) page = option_menu(menu_title='Menu', menu_icon="robot", options=["Damage Detection", "Under Construction"], icons=["camera", "key"], default_index=0 ) if page == "Damage Detection": c1.header('Car Parts Damage Detection') c1.write( """ """ ) # Display the list of CSV files directory = "./" all_files = os.listdir(directory) # Filter files to only include JPG files jpg_files = [file for file in all_files if file.endswith((".jpg"))] # Select an image file from the list selected_jpg = c1.selectbox("Select a JPG file from the list", ["None"] + jpg_files) uploaded_file = c1.file_uploader("Upload an image:") # Check if a file has been uploaded if uploaded_file is not None: # Load and display the image image = Image.open(uploaded_file) c1.image(image, width=450, caption="Uploaded image") elif selected_jpg != 'None': image = Image.open(selected_jpg) c1.image(image, width=450, caption="Uploaded image") else: c1.write("Please upload an image.") if c1.button("Prediction"): with st.spinner("Loading..."): imagen1, imagen2, imagen3, partes = inference(image) c2.markdown("













", unsafe_allow_html=True) tab1.image(imagen1, width=450) tab2.image(imagen2, width=450) tab3.image(imagen3, width=450) tab4.table(partes) elif page == "Under Construction": st.header('Under Construction') st.write( """ """ ) try: main() except Exception as e: st.sidebar.error(f"An error occurred: {e}")