dragonSwing's picture
Add duplicate badge
4136636
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from pypdf import PdfReader
import mimetypes
import validators
import requests
import tempfile
import gradio as gr
def get_empty_state():
return {"knowledge_base": None}
def on_token_change(user_token):
os.environ["OPENAI_API_KEY"] = user_token
def create_knowledge_base(docs):
# split into chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_documents(docs)
# Create embeddings
embeddings = OpenAIEmbeddings()
knowledge_base = FAISS.from_documents(chunks, embeddings)
return knowledge_base
def upload_file(file_obj):
# pdf_reader = PdfReader(file_obj.name)
# text = ""
# for page in pdf_reader.pages:
# text += page.extract_text()
loader = UnstructuredFileLoader(file_obj.name, strategy="fast")
docs = loader.load()
knowledge_base = create_knowledge_base(docs)
return file_obj.name, {"knowledge_base": knowledge_base}
def upload_via_url(url):
if validators.url(url):
r = requests.get(url)
if r.status_code != 200:
raise ValueError(
"Check the url of your file; returned status code %s" % r.status_code
)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_path = temp_file.name
loader = UnstructuredFileLoader(file_path, strategy="fast")
docs = loader.load()
with open(file_path, mode="rb") as f:
pass
knowledge_base = create_knowledge_base(docs)
return file_path, {"knowledge_base": knowledge_base}
else:
raise ValueError("Please enter a valid URL")
def answer_question(question, state):
knowledge_base = state["knowledge_base"]
if knowledge_base:
docs = knowledge_base.similarity_search(question)
llm = OpenAI(temperature=0.4)
chain = load_qa_chain(llm, chain_type="stuff")
response = chain.run(input_documents=docs, question=question)
return response
else:
return "Please upload a file first"
with gr.Blocks(css="style.css") as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# Ask your PDF πŸ’¬
"""
)
user_token = gr.Textbox(
value="",
label="OpenAI API Key",
placeholder="OpenAI API Key",
type="password",
show_label=True,
)
gr.Markdown("**Upload your file**")
with gr.Row(elem_id="row-flex"):
with gr.Column(scale=3):
file_url = gr.Textbox(
value="",
label="Upload your file",
placeholder="Enter a url",
show_label=False,
)
with gr.Column(scale=1, min_width=160):
upload_button = gr.UploadButton(
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"]
)
file_output = gr.File()
user_question = gr.Textbox(value="", label="Ask a question about your file:")
answer = gr.Textbox(value="", label="Answer:")
gr.Examples(
["What is the main topic of the file?", "Who is the author of the file?"],
user_question,
)
gr.HTML(
"""<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/dragonSwing/langchain-askpdf?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=dragonswing.langchain-askpdf" alt="visitors"></p></center>"""
)
file_url.submit(upload_via_url, file_url, [file_output, state])
upload_button.upload(upload_file, upload_button, [file_output, state])
user_token.change(on_token_change, inputs=[user_token], outputs=[])
user_question.submit(answer_question, [user_question, state], [answer])
demo.queue().launch()