Spaces:
Runtime error
Runtime error
File size: 15,146 Bytes
063372b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import asyncio
import os
import threading
import time
import traceback
from pathlib import Path
from typing import Optional, Dict, List
import cv2
import numpy as np
import socketio
import torch
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
import uvicorn
from PIL import Image
from fastapi import APIRouter, FastAPI, Request, UploadFile
from fastapi.encoders import jsonable_encoder
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse, Response
from fastapi.staticfiles import StaticFiles
from loguru import logger
from socketio import AsyncServer
from iopaint.file_manager import FileManager
from iopaint.helper import (
load_img,
decode_base64_to_image,
pil_to_bytes,
numpy_to_bytes,
concat_alpha_channel,
gen_frontend_mask,
adjust_mask,
)
from iopaint.model.utils import torch_gc
from iopaint.model_manager import ModelManager
from iopaint.plugins import build_plugins, RealESRGANUpscaler, InteractiveSeg
from iopaint.plugins.base_plugin import BasePlugin
from iopaint.plugins.remove_bg import RemoveBG
from iopaint.schema import (
GenInfoResponse,
ApiConfig,
ServerConfigResponse,
SwitchModelRequest,
InpaintRequest,
RunPluginRequest,
SDSampler,
PluginInfo,
AdjustMaskRequest,
RemoveBGModel,
SwitchPluginModelRequest,
ModelInfo,
InteractiveSegModel,
RealESRGANModel,
)
CURRENT_DIR = Path(__file__).parent.absolute().resolve()
WEB_APP_DIR = CURRENT_DIR / "web_app"
def api_middleware(app: FastAPI):
rich_available = False
try:
if os.environ.get("WEBUI_RICH_EXCEPTIONS", None) is not None:
import anyio # importing just so it can be placed on silent list
import starlette # importing just so it can be placed on silent list
from rich.console import Console
console = Console()
rich_available = True
except Exception:
pass
def handle_exception(request: Request, e: Exception):
err = {
"error": type(e).__name__,
"detail": vars(e).get("detail", ""),
"body": vars(e).get("body", ""),
"errors": str(e),
}
if not isinstance(
e, HTTPException
): # do not print backtrace on known httpexceptions
message = f"API error: {request.method}: {request.url} {err}"
if rich_available:
print(message)
console.print_exception(
show_locals=True,
max_frames=2,
extra_lines=1,
suppress=[anyio, starlette],
word_wrap=False,
width=min([console.width, 200]),
)
else:
traceback.print_exc()
return JSONResponse(
status_code=vars(e).get("status_code", 500), content=jsonable_encoder(err)
)
@app.middleware("http")
async def exception_handling(request: Request, call_next):
try:
return await call_next(request)
except Exception as e:
return handle_exception(request, e)
@app.exception_handler(Exception)
async def fastapi_exception_handler(request: Request, e: Exception):
return handle_exception(request, e)
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, e: HTTPException):
return handle_exception(request, e)
cors_options = {
"allow_methods": ["*"],
"allow_headers": ["*"],
"allow_origins": ["*"],
"allow_credentials": True,
}
app.add_middleware(CORSMiddleware, **cors_options)
global_sio: AsyncServer = None
def diffuser_callback(pipe, step: int, timestep: int, callback_kwargs: Dict = {}):
# self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict
# logger.info(f"diffusion callback: step={step}, timestep={timestep}")
# We use asyncio loos for task processing. Perhaps in the future, we can add a processing queue similar to InvokeAI,
# but for now let's just start a separate event loop. It shouldn't make a difference for single person use
asyncio.run(global_sio.emit("diffusion_progress", {"step": step}))
return {}
class Api:
def __init__(self, app: FastAPI, config: ApiConfig):
self.app = app
self.config = config
self.router = APIRouter()
self.queue_lock = threading.Lock()
api_middleware(self.app)
self.file_manager = self._build_file_manager()
self.plugins = self._build_plugins()
self.model_manager = self._build_model_manager()
# fmt: off
self.add_api_route("/api/v1/gen-info", self.api_geninfo, methods=["POST"], response_model=GenInfoResponse)
self.add_api_route("/api/v1/server-config", self.api_server_config, methods=["GET"], response_model=ServerConfigResponse)
self.add_api_route("/api/v1/model", self.api_current_model, methods=["GET"], response_model=ModelInfo)
self.add_api_route("/api/v1/model", self.api_switch_model, methods=["POST"], response_model=ModelInfo)
self.add_api_route("/api/v1/inputimage", self.api_input_image, methods=["GET"])
self.add_api_route("/api/v1/inpaint", self.api_inpaint, methods=["POST"])
self.add_api_route("/api/v1/switch_plugin_model", self.api_switch_plugin_model, methods=["POST"])
self.add_api_route("/api/v1/run_plugin_gen_mask", self.api_run_plugin_gen_mask, methods=["POST"])
self.add_api_route("/api/v1/run_plugin_gen_image", self.api_run_plugin_gen_image, methods=["POST"])
self.add_api_route("/api/v1/samplers", self.api_samplers, methods=["GET"])
self.add_api_route("/api/v1/adjust_mask", self.api_adjust_mask, methods=["POST"])
self.add_api_route("/api/v1/save_image", self.api_save_image, methods=["POST"])
self.app.mount("/", StaticFiles(directory=WEB_APP_DIR, html=True), name="assets")
# fmt: on
global global_sio
self.sio = socketio.AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.combined_asgi_app = socketio.ASGIApp(self.sio, self.app)
self.app.mount("/ws", self.combined_asgi_app)
global_sio = self.sio
def add_api_route(self, path: str, endpoint, **kwargs):
return self.app.add_api_route(path, endpoint, **kwargs)
def api_save_image(self, file: UploadFile):
filename = file.filename
origin_image_bytes = file.file.read()
with open(self.config.output_dir / filename, "wb") as fw:
fw.write(origin_image_bytes)
def api_current_model(self) -> ModelInfo:
return self.model_manager.current_model
def api_switch_model(self, req: SwitchModelRequest) -> ModelInfo:
if req.name == self.model_manager.name:
return self.model_manager.current_model
self.model_manager.switch(req.name)
return self.model_manager.current_model
def api_switch_plugin_model(self, req: SwitchPluginModelRequest):
if req.plugin_name in self.plugins:
self.plugins[req.plugin_name].switch_model(req.model_name)
if req.plugin_name == RemoveBG.name:
self.config.remove_bg_model = req.model_name
if req.plugin_name == RealESRGANUpscaler.name:
self.config.realesrgan_model = req.model_name
if req.plugin_name == InteractiveSeg.name:
self.config.interactive_seg_model = req.model_name
torch_gc()
def api_server_config(self) -> ServerConfigResponse:
plugins = []
for it in self.plugins.values():
plugins.append(
PluginInfo(
name=it.name,
support_gen_image=it.support_gen_image,
support_gen_mask=it.support_gen_mask,
)
)
return ServerConfigResponse(
plugins=plugins,
modelInfos=self.model_manager.scan_models(),
removeBGModel=self.config.remove_bg_model,
removeBGModels=RemoveBGModel.values(),
realesrganModel=self.config.realesrgan_model,
realesrganModels=RealESRGANModel.values(),
interactiveSegModel=self.config.interactive_seg_model,
interactiveSegModels=InteractiveSegModel.values(),
enableFileManager=self.file_manager is not None,
enableAutoSaving=self.config.output_dir is not None,
enableControlnet=self.model_manager.enable_controlnet,
controlnetMethod=self.model_manager.controlnet_method,
disableModelSwitch=False,
isDesktop=False,
samplers=self.api_samplers(),
)
def api_input_image(self) -> FileResponse:
if self.config.input and self.config.input.is_file():
return FileResponse(self.config.input)
raise HTTPException(status_code=404, detail="Input image not found")
def api_geninfo(self, file: UploadFile) -> GenInfoResponse:
_, _, info = load_img(file.file.read(), return_info=True)
parts = info.get("parameters", "").split("Negative prompt: ")
prompt = parts[0].strip()
negative_prompt = ""
if len(parts) > 1:
negative_prompt = parts[1].split("\n")[0].strip()
return GenInfoResponse(prompt=prompt, negative_prompt=negative_prompt)
def api_inpaint(self, req: InpaintRequest):
image, alpha_channel, infos = decode_base64_to_image(req.image)
mask, _, _ = decode_base64_to_image(req.mask, gray=True)
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
if image.shape[:2] != mask.shape[:2]:
raise HTTPException(
400,
detail=f"Image size({image.shape[:2]}) and mask size({mask.shape[:2]}) not match.",
)
if req.paint_by_example_example_image:
paint_by_example_image, _, _ = decode_base64_to_image(
req.paint_by_example_example_image
)
start = time.time()
rgb_np_img = self.model_manager(image, mask, req)
logger.info(f"process time: {(time.time() - start) * 1000:.2f}ms")
torch_gc()
rgb_np_img = cv2.cvtColor(rgb_np_img.astype(np.uint8), cv2.COLOR_BGR2RGB)
rgb_res = concat_alpha_channel(rgb_np_img, alpha_channel)
ext = "png"
res_img_bytes = pil_to_bytes(
Image.fromarray(rgb_res),
ext=ext,
quality=self.config.quality,
infos=infos,
)
asyncio.run(self.sio.emit("diffusion_finish"))
return Response(
content=res_img_bytes,
media_type=f"image/{ext}",
headers={"X-Seed": str(req.sd_seed)},
)
def api_run_plugin_gen_image(self, req: RunPluginRequest):
ext = "png"
if req.name not in self.plugins:
raise HTTPException(status_code=422, detail="Plugin not found")
if not self.plugins[req.name].support_gen_image:
raise HTTPException(
status_code=422, detail="Plugin does not support output image"
)
rgb_np_img, alpha_channel, infos = decode_base64_to_image(req.image)
bgr_or_rgba_np_img = self.plugins[req.name].gen_image(rgb_np_img, req)
torch_gc()
if bgr_or_rgba_np_img.shape[2] == 4:
rgba_np_img = bgr_or_rgba_np_img
else:
rgba_np_img = cv2.cvtColor(bgr_or_rgba_np_img, cv2.COLOR_BGR2RGB)
rgba_np_img = concat_alpha_channel(rgba_np_img, alpha_channel)
return Response(
content=pil_to_bytes(
Image.fromarray(rgba_np_img),
ext=ext,
quality=self.config.quality,
infos=infos,
),
media_type=f"image/{ext}",
)
def api_run_plugin_gen_mask(self, req: RunPluginRequest):
if req.name not in self.plugins:
raise HTTPException(status_code=422, detail="Plugin not found")
if not self.plugins[req.name].support_gen_mask:
raise HTTPException(
status_code=422, detail="Plugin does not support output image"
)
rgb_np_img, alpha_channel, infos = decode_base64_to_image(req.image)
bgr_or_gray_mask = self.plugins[req.name].gen_mask(rgb_np_img, req)
torch_gc()
res_mask = gen_frontend_mask(bgr_or_gray_mask)
return Response(
content=numpy_to_bytes(res_mask, "png"),
media_type="image/png",
)
def api_samplers(self) -> List[str]:
return [member.value for member in SDSampler.__members__.values()]
def api_adjust_mask(self, req: AdjustMaskRequest):
mask, _, _ = decode_base64_to_image(req.mask, gray=True)
mask = adjust_mask(mask, req.kernel_size, req.operate)
return Response(content=numpy_to_bytes(mask, "png"), media_type="image/png")
def launch(self):
self.app.include_router(self.router)
uvicorn.run(
self.combined_asgi_app,
host=self.config.host,
port=self.config.port,
timeout_keep_alive=999999999,
)
def _build_file_manager(self) -> Optional[FileManager]:
if self.config.input and self.config.input.is_dir():
logger.info(
f"Input is directory, initialize file manager {self.config.input}"
)
return FileManager(
app=self.app,
input_dir=self.config.input,
output_dir=self.config.output_dir,
)
return None
def _build_plugins(self) -> Dict[str, BasePlugin]:
return build_plugins(
self.config.enable_interactive_seg,
self.config.interactive_seg_model,
self.config.interactive_seg_device,
self.config.enable_remove_bg,
self.config.remove_bg_model,
self.config.enable_anime_seg,
self.config.enable_realesrgan,
self.config.realesrgan_device,
self.config.realesrgan_model,
self.config.enable_gfpgan,
self.config.gfpgan_device,
self.config.enable_restoreformer,
self.config.restoreformer_device,
self.config.no_half,
)
def _build_model_manager(self):
return ModelManager(
name=self.config.model,
device=torch.device(self.config.device),
no_half=self.config.no_half,
low_mem=self.config.low_mem,
disable_nsfw=self.config.disable_nsfw_checker,
sd_cpu_textencoder=self.config.cpu_textencoder,
local_files_only=self.config.local_files_only,
cpu_offload=self.config.cpu_offload,
callback=diffuser_callback,
)
|