File size: 14,078 Bytes
e041d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import random
from enum import Enum
from pathlib import Path
from typing import Optional, Literal, List

from iopaint.const import (
    INSTRUCT_PIX2PIX_NAME,
    KANDINSKY22_NAME,
    POWERPAINT_NAME,
    ANYTEXT_NAME,
    SDXL_CONTROLNET_CHOICES,
    SD2_CONTROLNET_CHOICES,
    SD_CONTROLNET_CHOICES,
)
from loguru import logger
from pydantic import BaseModel, Field, field_validator, computed_field


class ModelType(str, Enum):
    INPAINT = "inpaint"  # LaMa, MAT...
    DIFFUSERS_SD = "diffusers_sd"
    DIFFUSERS_SD_INPAINT = "diffusers_sd_inpaint"
    DIFFUSERS_SDXL = "diffusers_sdxl"
    DIFFUSERS_SDXL_INPAINT = "diffusers_sdxl_inpaint"
    DIFFUSERS_OTHER = "diffusers_other"


class ModelInfo(BaseModel):
    name: str
    path: str
    model_type: ModelType
    is_single_file_diffusers: bool = False

    @computed_field
    @property
    def need_prompt(self) -> bool:
        return self.model_type in [
            ModelType.DIFFUSERS_SD,
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SD_INPAINT,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ] or self.name in [
            INSTRUCT_PIX2PIX_NAME,
            KANDINSKY22_NAME,
            POWERPAINT_NAME,
            ANYTEXT_NAME,
        ]

    @computed_field
    @property
    def controlnets(self) -> List[str]:
        if self.model_type in [
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ]:
            return SDXL_CONTROLNET_CHOICES
        if self.model_type in [ModelType.DIFFUSERS_SD, ModelType.DIFFUSERS_SD_INPAINT]:
            if "sd2" in self.name.lower():
                return SD2_CONTROLNET_CHOICES
            else:
                return SD_CONTROLNET_CHOICES
        if self.name == POWERPAINT_NAME:
            return SD_CONTROLNET_CHOICES
        return []

    @computed_field
    @property
    def support_strength(self) -> bool:
        return self.model_type in [
            ModelType.DIFFUSERS_SD,
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SD_INPAINT,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ] or self.name in [POWERPAINT_NAME, ANYTEXT_NAME]

    @computed_field
    @property
    def support_outpainting(self) -> bool:
        return self.model_type in [
            ModelType.DIFFUSERS_SD,
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SD_INPAINT,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ] or self.name in [KANDINSKY22_NAME, POWERPAINT_NAME]

    @computed_field
    @property
    def support_lcm_lora(self) -> bool:
        return self.model_type in [
            ModelType.DIFFUSERS_SD,
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SD_INPAINT,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ]

    @computed_field
    @property
    def support_controlnet(self) -> bool:
        return self.model_type in [
            ModelType.DIFFUSERS_SD,
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SD_INPAINT,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ]

    @computed_field
    @property
    def support_freeu(self) -> bool:
        return self.model_type in [
            ModelType.DIFFUSERS_SD,
            ModelType.DIFFUSERS_SDXL,
            ModelType.DIFFUSERS_SD_INPAINT,
            ModelType.DIFFUSERS_SDXL_INPAINT,
        ] or self.name in [INSTRUCT_PIX2PIX_NAME]


class Choices(str, Enum):
    @classmethod
    def values(cls):
        return [member.value for member in cls]


class RealESRGANModel(Choices):
    realesr_general_x4v3 = "realesr-general-x4v3"
    RealESRGAN_x4plus = "RealESRGAN_x4plus"
    RealESRGAN_x4plus_anime_6B = "RealESRGAN_x4plus_anime_6B"


class RemoveBGModel(Choices):
    u2net = "u2net"
    u2netp = "u2netp"
    u2net_human_seg = "u2net_human_seg"
    u2net_cloth_seg = "u2net_cloth_seg"
    silueta = "silueta"
    isnet_general_use = "isnet-general-use"
    briaai_rmbg_1_4 = "briaai/RMBG-1.4"


class Device(Choices):
    cpu = "cpu"
    cuda = "cuda"
    mps = "mps"


class InteractiveSegModel(Choices):
    vit_b = "vit_b"
    vit_l = "vit_l"
    vit_h = "vit_h"
    mobile_sam = "mobile_sam"


class PluginInfo(BaseModel):
    name: str
    support_gen_image: bool = False
    support_gen_mask: bool = False


class CV2Flag(str, Enum):
    INPAINT_NS = "INPAINT_NS"
    INPAINT_TELEA = "INPAINT_TELEA"


class HDStrategy(str, Enum):
    # Use original image size
    ORIGINAL = "Original"
    # Resize the longer side of the image to a specific size(hd_strategy_resize_limit),
    # then do inpainting on the resized image. Finally, resize the inpainting result to the original size.
    # The area outside the mask will not lose quality.
    RESIZE = "Resize"
    # Crop masking area(with a margin controlled by hd_strategy_crop_margin) from the original image to do inpainting
    CROP = "Crop"


class LDMSampler(str, Enum):
    ddim = "ddim"
    plms = "plms"


class SDSampler(str, Enum):
    dpm_plus_plus_2m = "DPM++ 2M"
    dpm_plus_plus_2m_karras = "DPM++ 2M Karras"
    dpm_plus_plus_2m_sde = "DPM++ 2M SDE"
    dpm_plus_plus_2m_sde_karras = "DPM++ 2M SDE Karras"
    dpm_plus_plus_sde = "DPM++ SDE"
    dpm_plus_plus_sde_karras = "DPM++ SDE Karras"
    dpm2 = "DPM2"
    dpm2_karras = "DPM2 Karras"
    dpm2_a = "DPM2 a"
    dpm2_a_karras = "DPM2 a Karras"
    euler = "Euler"
    euler_a = "Euler a"
    heun = "Heun"
    lms = "LMS"
    lms_karras = "LMS Karras"

    ddim = "DDIM"
    pndm = "PNDM"
    uni_pc = "UniPC"
    lcm = "LCM"


class FREEUConfig(BaseModel):
    s1: float = 0.9
    s2: float = 0.2
    b1: float = 1.2
    b2: float = 1.4


class PowerPaintTask(str, Enum):
    text_guided = "text-guided"
    shape_guided = "shape-guided"
    object_remove = "object-remove"
    outpainting = "outpainting"


class ApiConfig(BaseModel):
    host: str
    port: int
    inbrowser: bool
    model: str
    no_half: bool
    low_mem: bool
    cpu_offload: bool
    disable_nsfw_checker: bool
    local_files_only: bool
    cpu_textencoder: bool
    device: Device
    input: Optional[Path]
    output_dir: Optional[Path]
    quality: int
    enable_interactive_seg: bool
    interactive_seg_model: InteractiveSegModel
    interactive_seg_device: Device
    enable_remove_bg: bool
    remove_bg_model: str
    enable_anime_seg: bool
    enable_realesrgan: bool
    realesrgan_device: Device
    realesrgan_model: RealESRGANModel
    enable_gfpgan: bool
    gfpgan_device: Device
    enable_restoreformer: bool
    restoreformer_device: Device


class InpaintRequest(BaseModel):
    image: Optional[str] = Field(None, description="base64 encoded image")
    mask: Optional[str] = Field(None, description="base64 encoded mask")

    ldm_steps: int = Field(20, description="Steps for ldm model.")
    ldm_sampler: str = Field(LDMSampler.plms, discription="Sampler for ldm model.")
    zits_wireframe: bool = Field(True, description="Enable wireframe for zits model.")

    hd_strategy: str = Field(
        HDStrategy.CROP,
        description="Different way to preprocess image, only used by erase models(e.g. lama/mat)",
    )
    hd_strategy_crop_trigger_size: int = Field(
        800,
        description="Crop trigger size for hd_strategy=CROP, if the longer side of the image is larger than this value, use crop strategy",
    )
    hd_strategy_crop_margin: int = Field(
        128, description="Crop margin for hd_strategy=CROP"
    )
    hd_strategy_resize_limit: int = Field(
        1280, description="Resize limit for hd_strategy=RESIZE"
    )

    prompt: str = Field("", description="Prompt for diffusion models.")
    negative_prompt: str = Field(
        "", description="Negative prompt for diffusion models."
    )
    use_croper: bool = Field(
        False, description="Crop image before doing diffusion inpainting"
    )
    croper_x: int = Field(0, description="Crop x for croper")
    croper_y: int = Field(0, description="Crop y for croper")
    croper_height: int = Field(512, description="Crop height for croper")
    croper_width: int = Field(512, description="Crop width for croper")

    use_extender: bool = Field(
        False, description="Extend image before doing sd outpainting"
    )
    extender_x: int = Field(0, description="Extend x for extender")
    extender_y: int = Field(0, description="Extend y for extender")
    extender_height: int = Field(640, description="Extend height for extender")
    extender_width: int = Field(640, description="Extend width for extender")

    sd_scale: float = Field(
        1.0,
        description="Resize the image before doing sd inpainting, the area outside the mask will not lose quality.",
        gt=0.0,
        le=1.0,
    )
    sd_mask_blur: int = Field(
        11,
        description="Blur the edge of mask area. The higher the number the smoother blend with the original image",
    )
    sd_strength: float = Field(
        1.0,
        description="Strength is a measure of how much noise is added to the base image, which influences how similar the output is to the base image. Higher value means more noise and more different from the base image",
        le=1.0,
    )
    sd_steps: int = Field(
        50,
        description="The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.",
    )
    sd_guidance_scale: float = Field(
        7.5,
        help="Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.",
    )
    sd_sampler: str = Field(
        SDSampler.uni_pc, description="Sampler for diffusion model."
    )
    sd_seed: int = Field(
        42,
        description="Seed for diffusion model. -1 mean random seed",
        validate_default=True,
    )
    sd_match_histograms: bool = Field(
        False,
        description="Match histograms between inpainting area and original image.",
    )

    sd_outpainting_softness: float = Field(20.0)
    sd_outpainting_space: float = Field(20.0)

    sd_freeu: bool = Field(
        False,
        description="Enable freeu mode. https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu",
    )
    sd_freeu_config: FREEUConfig = FREEUConfig()

    sd_lcm_lora: bool = Field(
        False,
        description="Enable lcm-lora mode. https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm#texttoimage",
    )

    sd_keep_unmasked_area: bool = Field(
        True, description="Keep unmasked area unchanged"
    )

    cv2_flag: CV2Flag = Field(
        CV2Flag.INPAINT_NS,
        description="Flag for opencv inpainting: https://docs.opencv.org/4.6.0/d7/d8b/group__photo__inpaint.html#gga8002a65f5a3328fbf15df81b842d3c3ca05e763003a805e6c11c673a9f4ba7d07",
    )
    cv2_radius: int = Field(
        4,
        description="Radius of a circular neighborhood of each point inpainted that is considered by the algorithm",
    )

    # Paint by Example
    paint_by_example_example_image: Optional[str] = Field(
        None, description="Base64 encoded example image for paint by example model"
    )

    # InstructPix2Pix
    p2p_image_guidance_scale: float = Field(1.5, description="Image guidance scale")

    # ControlNet
    enable_controlnet: bool = Field(False, description="Enable controlnet")
    controlnet_conditioning_scale: float = Field(
        0.4, description="Conditioning scale", ge=0.0, le=1.0
    )
    controlnet_method: str = Field(
        "lllyasviel/control_v11p_sd15_canny", description="Controlnet method"
    )

    # PowerPaint
    powerpaint_task: PowerPaintTask = Field(
        PowerPaintTask.text_guided, description="PowerPaint task"
    )
    fitting_degree: float = Field(
        1.0,
        description="Control the fitting degree of the generated objects to the mask shape.",
        gt=0.0,
        le=1.0,
    )

    @field_validator("sd_seed")
    @classmethod
    def sd_seed_validator(cls, v: int) -> int:
        if v == -1:
            return random.randint(1, 99999999)
        return v

    @field_validator("controlnet_conditioning_scale")
    @classmethod
    def validate_field(cls, v: float, values):
        use_extender = values.data["use_extender"]
        enable_controlnet = values.data["enable_controlnet"]
        if use_extender and enable_controlnet:
            logger.info(f"Extender is enabled, set controlnet_conditioning_scale=0")
            return 0
        return v


class RunPluginRequest(BaseModel):
    name: str
    image: str = Field(..., description="base64 encoded image")
    clicks: List[List[int]] = Field(
        [], description="Clicks for interactive seg, [[x,y,0/1], [x2,y2,0/1]]"
    )
    scale: float = Field(2.0, description="Scale for upscaling")


MediaTab = Literal["input", "output"]


class MediasResponse(BaseModel):
    name: str
    height: int
    width: int
    ctime: float
    mtime: float


class GenInfoResponse(BaseModel):
    prompt: str = ""
    negative_prompt: str = ""


class ServerConfigResponse(BaseModel):
    plugins: List[PluginInfo]
    modelInfos: List[ModelInfo]
    removeBGModel: RemoveBGModel
    removeBGModels: List[RemoveBGModel]
    realesrganModel: RealESRGANModel
    realesrganModels: List[RealESRGANModel]
    interactiveSegModel: InteractiveSegModel
    interactiveSegModels: List[InteractiveSegModel]
    enableFileManager: bool
    enableAutoSaving: bool
    enableControlnet: bool
    controlnetMethod: Optional[str]
    disableModelSwitch: bool
    isDesktop: bool
    samplers: List[str]


class SwitchModelRequest(BaseModel):
    name: str


class SwitchPluginModelRequest(BaseModel):
    plugin_name: str
    model_name: str


AdjustMaskOperate = Literal["expand", "shrink", "reverse"]


class AdjustMaskRequest(BaseModel):
    mask: str = Field(
        ..., description="base64 encoded mask. 255 means area to do inpaint"
    )
    operate: AdjustMaskOperate = Field(..., description="expand/shrink/reverse")
    kernel_size: int = Field(5, description="Kernel size for expanding mask")