Spaces:
Runtime error
Runtime error
import PIL.Image | |
import cv2 | |
import torch | |
from loguru import logger | |
from iopaint.const import INSTRUCT_PIX2PIX_NAME | |
from .base import DiffusionInpaintModel | |
from iopaint.schema import InpaintRequest | |
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only | |
class InstructPix2Pix(DiffusionInpaintModel): | |
name = INSTRUCT_PIX2PIX_NAME | |
pad_mod = 8 | |
min_size = 512 | |
def init_model(self, device: torch.device, **kwargs): | |
from diffusers import StableDiffusionInstructPix2PixPipeline | |
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) | |
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)} | |
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update( | |
dict( | |
safety_checker=None, | |
feature_extractor=None, | |
requires_safety_checker=False, | |
) | |
) | |
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained( | |
self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs | |
) | |
enable_low_mem(self.model, kwargs.get("low_mem", False)) | |
if kwargs.get("cpu_offload", False) and use_gpu: | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
def forward(self, image, mask, config: InpaintRequest): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0] | |
""" | |
output = self.model( | |
image=PIL.Image.fromarray(image), | |
prompt=config.prompt, | |
negative_prompt=config.negative_prompt, | |
num_inference_steps=config.sd_steps, | |
image_guidance_scale=config.p2p_image_guidance_scale, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np", | |
generator=torch.manual_seed(config.sd_seed), | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |