Spaces:
Runtime error
Runtime error
nikunjkdtechnoland
commited on
Commit
•
cbbdd92
1
Parent(s):
4b98c85
some more add more file
Browse files- iopaint/model/power_paint/powerpaint_tokenizer.py +540 -0
- iopaint/tests/test_adjust_mask.py +17 -0
- iopaint/tests/test_anytext.py +45 -0
- iopaint/tests/test_controlnet.py +118 -0
- iopaint/tests/test_instruct_pix2pix.py +40 -0
- iopaint/tests/test_load_img.py +19 -0
- iopaint/tests/test_low_mem.py +131 -0
- iopaint/tests/test_match_histograms.py +36 -0
- iopaint/tests/test_model.py +160 -0
- iopaint/tests/test_model_md5.py +16 -0
- iopaint/tests/test_model_switch.py +70 -0
- iopaint/tests/test_outpainting.py +138 -0
- iopaint/tests/test_paint_by_example.py +55 -0
- iopaint/tests/test_plugins.py +120 -0
- iopaint/tests/test_save_exif.py +59 -0
- iopaint/tests/test_sd_model.py +269 -0
iopaint/model/power_paint/powerpaint_tokenizer.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import copy
|
4 |
+
import random
|
5 |
+
from typing import Any, List, Optional, Union
|
6 |
+
from transformers import CLIPTokenizer
|
7 |
+
|
8 |
+
from iopaint.schema import PowerPaintTask
|
9 |
+
|
10 |
+
|
11 |
+
def add_task_to_prompt(prompt, negative_prompt, task: PowerPaintTask):
|
12 |
+
if task == PowerPaintTask.object_remove:
|
13 |
+
promptA = prompt + " P_ctxt"
|
14 |
+
promptB = prompt + " P_ctxt"
|
15 |
+
negative_promptA = negative_prompt + " P_obj"
|
16 |
+
negative_promptB = negative_prompt + " P_obj"
|
17 |
+
elif task == PowerPaintTask.shape_guided:
|
18 |
+
promptA = prompt + " P_shape"
|
19 |
+
promptB = prompt + " P_ctxt"
|
20 |
+
negative_promptA = negative_prompt
|
21 |
+
negative_promptB = negative_prompt
|
22 |
+
elif task == PowerPaintTask.outpainting:
|
23 |
+
promptA = prompt + " P_ctxt"
|
24 |
+
promptB = prompt + " P_ctxt"
|
25 |
+
negative_promptA = negative_prompt + " P_obj"
|
26 |
+
negative_promptB = negative_prompt + " P_obj"
|
27 |
+
else:
|
28 |
+
promptA = prompt + " P_obj"
|
29 |
+
promptB = prompt + " P_obj"
|
30 |
+
negative_promptA = negative_prompt
|
31 |
+
negative_promptB = negative_prompt
|
32 |
+
|
33 |
+
return promptA, promptB, negative_promptA, negative_promptB
|
34 |
+
|
35 |
+
|
36 |
+
class PowerPaintTokenizer:
|
37 |
+
def __init__(self, tokenizer: CLIPTokenizer):
|
38 |
+
self.wrapped = tokenizer
|
39 |
+
self.token_map = {}
|
40 |
+
placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"]
|
41 |
+
num_vec_per_token = 10
|
42 |
+
for placeholder_token in placeholder_tokens:
|
43 |
+
output = []
|
44 |
+
for i in range(num_vec_per_token):
|
45 |
+
ith_token = placeholder_token + f"_{i}"
|
46 |
+
output.append(ith_token)
|
47 |
+
self.token_map[placeholder_token] = output
|
48 |
+
|
49 |
+
def __getattr__(self, name: str) -> Any:
|
50 |
+
if name == "wrapped":
|
51 |
+
return super().__getattr__("wrapped")
|
52 |
+
|
53 |
+
try:
|
54 |
+
return getattr(self.wrapped, name)
|
55 |
+
except AttributeError:
|
56 |
+
try:
|
57 |
+
return super().__getattr__(name)
|
58 |
+
except AttributeError:
|
59 |
+
raise AttributeError(
|
60 |
+
"'name' cannot be found in both "
|
61 |
+
f"'{self.__class__.__name__}' and "
|
62 |
+
f"'{self.__class__.__name__}.tokenizer'."
|
63 |
+
)
|
64 |
+
|
65 |
+
def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
|
66 |
+
"""Attempt to add tokens to the tokenizer.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
tokens (Union[str, List[str]]): The tokens to be added.
|
70 |
+
"""
|
71 |
+
num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
|
72 |
+
assert num_added_tokens != 0, (
|
73 |
+
f"The tokenizer already contains the token {tokens}. Please pass "
|
74 |
+
"a different `placeholder_token` that is not already in the "
|
75 |
+
"tokenizer."
|
76 |
+
)
|
77 |
+
|
78 |
+
def get_token_info(self, token: str) -> dict:
|
79 |
+
"""Get the information of a token, including its start and end index in
|
80 |
+
the current tokenizer.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
token (str): The token to be queried.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
dict: The information of the token, including its start and end
|
87 |
+
index in current tokenizer.
|
88 |
+
"""
|
89 |
+
token_ids = self.__call__(token).input_ids
|
90 |
+
start, end = token_ids[1], token_ids[-2] + 1
|
91 |
+
return {"name": token, "start": start, "end": end}
|
92 |
+
|
93 |
+
def add_placeholder_token(
|
94 |
+
self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs
|
95 |
+
):
|
96 |
+
"""Add placeholder tokens to the tokenizer.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
placeholder_token (str): The placeholder token to be added.
|
100 |
+
num_vec_per_token (int, optional): The number of vectors of
|
101 |
+
the added placeholder token.
|
102 |
+
*args, **kwargs: The arguments for `self.wrapped.add_tokens`.
|
103 |
+
"""
|
104 |
+
output = []
|
105 |
+
if num_vec_per_token == 1:
|
106 |
+
self.try_adding_tokens(placeholder_token, *args, **kwargs)
|
107 |
+
output.append(placeholder_token)
|
108 |
+
else:
|
109 |
+
output = []
|
110 |
+
for i in range(num_vec_per_token):
|
111 |
+
ith_token = placeholder_token + f"_{i}"
|
112 |
+
self.try_adding_tokens(ith_token, *args, **kwargs)
|
113 |
+
output.append(ith_token)
|
114 |
+
|
115 |
+
for token in self.token_map:
|
116 |
+
if token in placeholder_token:
|
117 |
+
raise ValueError(
|
118 |
+
f"The tokenizer already has placeholder token {token} "
|
119 |
+
f"that can get confused with {placeholder_token} "
|
120 |
+
"keep placeholder tokens independent"
|
121 |
+
)
|
122 |
+
self.token_map[placeholder_token] = output
|
123 |
+
|
124 |
+
def replace_placeholder_tokens_in_text(
|
125 |
+
self,
|
126 |
+
text: Union[str, List[str]],
|
127 |
+
vector_shuffle: bool = False,
|
128 |
+
prop_tokens_to_load: float = 1.0,
|
129 |
+
) -> Union[str, List[str]]:
|
130 |
+
"""Replace the keywords in text with placeholder tokens. This function
|
131 |
+
will be called in `self.__call__` and `self.encode`.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
text (Union[str, List[str]]): The text to be processed.
|
135 |
+
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
136 |
+
Defaults to False.
|
137 |
+
prop_tokens_to_load (float, optional): The proportion of tokens to
|
138 |
+
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
Union[str, List[str]]: The processed text.
|
142 |
+
"""
|
143 |
+
if isinstance(text, list):
|
144 |
+
output = []
|
145 |
+
for i in range(len(text)):
|
146 |
+
output.append(
|
147 |
+
self.replace_placeholder_tokens_in_text(
|
148 |
+
text[i], vector_shuffle=vector_shuffle
|
149 |
+
)
|
150 |
+
)
|
151 |
+
return output
|
152 |
+
|
153 |
+
for placeholder_token in self.token_map:
|
154 |
+
if placeholder_token in text:
|
155 |
+
tokens = self.token_map[placeholder_token]
|
156 |
+
tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
|
157 |
+
if vector_shuffle:
|
158 |
+
tokens = copy.copy(tokens)
|
159 |
+
random.shuffle(tokens)
|
160 |
+
text = text.replace(placeholder_token, " ".join(tokens))
|
161 |
+
return text
|
162 |
+
|
163 |
+
def replace_text_with_placeholder_tokens(
|
164 |
+
self, text: Union[str, List[str]]
|
165 |
+
) -> Union[str, List[str]]:
|
166 |
+
"""Replace the placeholder tokens in text with the original keywords.
|
167 |
+
This function will be called in `self.decode`.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
text (Union[str, List[str]]): The text to be processed.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
Union[str, List[str]]: The processed text.
|
174 |
+
"""
|
175 |
+
if isinstance(text, list):
|
176 |
+
output = []
|
177 |
+
for i in range(len(text)):
|
178 |
+
output.append(self.replace_text_with_placeholder_tokens(text[i]))
|
179 |
+
return output
|
180 |
+
|
181 |
+
for placeholder_token, tokens in self.token_map.items():
|
182 |
+
merged_tokens = " ".join(tokens)
|
183 |
+
if merged_tokens in text:
|
184 |
+
text = text.replace(merged_tokens, placeholder_token)
|
185 |
+
return text
|
186 |
+
|
187 |
+
def __call__(
|
188 |
+
self,
|
189 |
+
text: Union[str, List[str]],
|
190 |
+
*args,
|
191 |
+
vector_shuffle: bool = False,
|
192 |
+
prop_tokens_to_load: float = 1.0,
|
193 |
+
**kwargs,
|
194 |
+
):
|
195 |
+
"""The call function of the wrapper.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
text (Union[str, List[str]]): The text to be tokenized.
|
199 |
+
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
200 |
+
Defaults to False.
|
201 |
+
prop_tokens_to_load (float, optional): The proportion of tokens to
|
202 |
+
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
|
203 |
+
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
204 |
+
"""
|
205 |
+
replaced_text = self.replace_placeholder_tokens_in_text(
|
206 |
+
text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
|
207 |
+
)
|
208 |
+
|
209 |
+
return self.wrapped.__call__(replaced_text, *args, **kwargs)
|
210 |
+
|
211 |
+
def encode(self, text: Union[str, List[str]], *args, **kwargs):
|
212 |
+
"""Encode the passed text to token index.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
text (Union[str, List[str]]): The text to be encode.
|
216 |
+
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
217 |
+
"""
|
218 |
+
replaced_text = self.replace_placeholder_tokens_in_text(text)
|
219 |
+
return self.wrapped(replaced_text, *args, **kwargs)
|
220 |
+
|
221 |
+
def decode(
|
222 |
+
self, token_ids, return_raw: bool = False, *args, **kwargs
|
223 |
+
) -> Union[str, List[str]]:
|
224 |
+
"""Decode the token index to text.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
token_ids: The token index to be decoded.
|
228 |
+
return_raw: Whether keep the placeholder token in the text.
|
229 |
+
Defaults to False.
|
230 |
+
*args, **kwargs: The arguments for `self.wrapped.decode`.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
Union[str, List[str]]: The decoded text.
|
234 |
+
"""
|
235 |
+
text = self.wrapped.decode(token_ids, *args, **kwargs)
|
236 |
+
if return_raw:
|
237 |
+
return text
|
238 |
+
replaced_text = self.replace_text_with_placeholder_tokens(text)
|
239 |
+
return replaced_text
|
240 |
+
|
241 |
+
|
242 |
+
class EmbeddingLayerWithFixes(nn.Module):
|
243 |
+
"""The revised embedding layer to support external embeddings. This design
|
244 |
+
of this class is inspired by https://github.com/AUTOMATIC1111/stable-
|
245 |
+
diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
|
246 |
+
jack.py#L224 # noqa.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
wrapped (nn.Emebdding): The embedding layer to be wrapped.
|
250 |
+
external_embeddings (Union[dict, List[dict]], optional): The external
|
251 |
+
embeddings added to this layer. Defaults to None.
|
252 |
+
"""
|
253 |
+
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
wrapped: nn.Embedding,
|
257 |
+
external_embeddings: Optional[Union[dict, List[dict]]] = None,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
self.wrapped = wrapped
|
261 |
+
self.num_embeddings = wrapped.weight.shape[0]
|
262 |
+
|
263 |
+
self.external_embeddings = []
|
264 |
+
if external_embeddings:
|
265 |
+
self.add_embeddings(external_embeddings)
|
266 |
+
|
267 |
+
self.trainable_embeddings = nn.ParameterDict()
|
268 |
+
|
269 |
+
@property
|
270 |
+
def weight(self):
|
271 |
+
"""Get the weight of wrapped embedding layer."""
|
272 |
+
return self.wrapped.weight
|
273 |
+
|
274 |
+
def check_duplicate_names(self, embeddings: List[dict]):
|
275 |
+
"""Check whether duplicate names exist in list of 'external
|
276 |
+
embeddings'.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
embeddings (List[dict]): A list of embedding to be check.
|
280 |
+
"""
|
281 |
+
names = [emb["name"] for emb in embeddings]
|
282 |
+
assert len(names) == len(set(names)), (
|
283 |
+
"Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
|
284 |
+
)
|
285 |
+
|
286 |
+
def check_ids_overlap(self, embeddings):
|
287 |
+
"""Check whether overlap exist in token ids of 'external_embeddings'.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
embeddings (List[dict]): A list of embedding to be check.
|
291 |
+
"""
|
292 |
+
ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
|
293 |
+
ids_range.sort() # sort by 'start'
|
294 |
+
# check if 'end' has overlapping
|
295 |
+
for idx in range(len(ids_range) - 1):
|
296 |
+
name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
|
297 |
+
assert ids_range[idx][1] <= ids_range[idx + 1][0], (
|
298 |
+
f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
|
299 |
+
)
|
300 |
+
|
301 |
+
def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
|
302 |
+
"""Add external embeddings to this layer.
|
303 |
+
|
304 |
+
Use case:
|
305 |
+
|
306 |
+
>>> 1. Add token to tokenizer and get the token id.
|
307 |
+
>>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
|
308 |
+
>>> # 'how much' in kiswahili
|
309 |
+
>>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
|
310 |
+
>>>
|
311 |
+
>>> 2. Add external embeddings to the model.
|
312 |
+
>>> new_embedding = {
|
313 |
+
>>> 'name': 'ngapi', # 'how much' in kiswahili
|
314 |
+
>>> 'embedding': torch.ones(1, 15) * 4,
|
315 |
+
>>> 'start': tokenizer.get_token_info('kwaheri')['start'],
|
316 |
+
>>> 'end': tokenizer.get_token_info('kwaheri')['end'],
|
317 |
+
>>> 'trainable': False # if True, will registry as a parameter
|
318 |
+
>>> }
|
319 |
+
>>> embedding_layer = nn.Embedding(10, 15)
|
320 |
+
>>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
|
321 |
+
>>> embedding_layer_wrapper.add_embeddings(new_embedding)
|
322 |
+
>>>
|
323 |
+
>>> 3. Forward tokenizer and embedding layer!
|
324 |
+
>>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
|
325 |
+
>>> input_ids = tokenizer(
|
326 |
+
>>> input_text, padding='max_length', truncation=True,
|
327 |
+
>>> return_tensors='pt')['input_ids']
|
328 |
+
>>> out_feat = embedding_layer_wrapper(input_ids)
|
329 |
+
>>>
|
330 |
+
>>> 4. Let's validate the result!
|
331 |
+
>>> assert (out_feat[0, 3: 7] == 2.3).all()
|
332 |
+
>>> assert (out_feat[2, 5: 9] == 2.3).all()
|
333 |
+
|
334 |
+
Args:
|
335 |
+
embeddings (Union[dict, list[dict]]): The external embeddings to
|
336 |
+
be added. Each dict must contain the following 4 fields: 'name'
|
337 |
+
(the name of this embedding), 'embedding' (the embedding
|
338 |
+
tensor), 'start' (the start token id of this embedding), 'end'
|
339 |
+
(the end token id of this embedding). For example:
|
340 |
+
`{name: NAME, start: START, end: END, embedding: torch.Tensor}`
|
341 |
+
"""
|
342 |
+
if isinstance(embeddings, dict):
|
343 |
+
embeddings = [embeddings]
|
344 |
+
|
345 |
+
self.external_embeddings += embeddings
|
346 |
+
self.check_duplicate_names(self.external_embeddings)
|
347 |
+
self.check_ids_overlap(self.external_embeddings)
|
348 |
+
|
349 |
+
# set for trainable
|
350 |
+
added_trainable_emb_info = []
|
351 |
+
for embedding in embeddings:
|
352 |
+
trainable = embedding.get("trainable", False)
|
353 |
+
if trainable:
|
354 |
+
name = embedding["name"]
|
355 |
+
embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
|
356 |
+
self.trainable_embeddings[name] = embedding["embedding"]
|
357 |
+
added_trainable_emb_info.append(name)
|
358 |
+
|
359 |
+
added_emb_info = [emb["name"] for emb in embeddings]
|
360 |
+
added_emb_info = ", ".join(added_emb_info)
|
361 |
+
print(f"Successfully add external embeddings: {added_emb_info}.", "current")
|
362 |
+
|
363 |
+
if added_trainable_emb_info:
|
364 |
+
added_trainable_emb_info = ", ".join(added_trainable_emb_info)
|
365 |
+
print(
|
366 |
+
"Successfully add trainable external embeddings: "
|
367 |
+
f"{added_trainable_emb_info}",
|
368 |
+
"current",
|
369 |
+
)
|
370 |
+
|
371 |
+
def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
372 |
+
"""Replace external input ids to 0.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
input_ids (torch.Tensor): The input ids to be replaced.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
torch.Tensor: The replaced input ids.
|
379 |
+
"""
|
380 |
+
input_ids_fwd = input_ids.clone()
|
381 |
+
input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
|
382 |
+
return input_ids_fwd
|
383 |
+
|
384 |
+
def replace_embeddings(
|
385 |
+
self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
|
386 |
+
) -> torch.Tensor:
|
387 |
+
"""Replace external embedding to the embedding layer. Noted that, in
|
388 |
+
this function we use `torch.cat` to avoid inplace modification.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
input_ids (torch.Tensor): The original token ids. Shape like
|
392 |
+
[LENGTH, ].
|
393 |
+
embedding (torch.Tensor): The embedding of token ids after
|
394 |
+
`replace_input_ids` function.
|
395 |
+
external_embedding (dict): The external embedding to be replaced.
|
396 |
+
|
397 |
+
Returns:
|
398 |
+
torch.Tensor: The replaced embedding.
|
399 |
+
"""
|
400 |
+
new_embedding = []
|
401 |
+
|
402 |
+
name = external_embedding["name"]
|
403 |
+
start = external_embedding["start"]
|
404 |
+
end = external_embedding["end"]
|
405 |
+
target_ids_to_replace = [i for i in range(start, end)]
|
406 |
+
ext_emb = external_embedding["embedding"]
|
407 |
+
|
408 |
+
# do not need to replace
|
409 |
+
if not (input_ids == start).any():
|
410 |
+
return embedding
|
411 |
+
|
412 |
+
# start replace
|
413 |
+
s_idx, e_idx = 0, 0
|
414 |
+
while e_idx < len(input_ids):
|
415 |
+
if input_ids[e_idx] == start:
|
416 |
+
if e_idx != 0:
|
417 |
+
# add embedding do not need to replace
|
418 |
+
new_embedding.append(embedding[s_idx:e_idx])
|
419 |
+
|
420 |
+
# check if the next embedding need to replace is valid
|
421 |
+
actually_ids_to_replace = [
|
422 |
+
int(i) for i in input_ids[e_idx : e_idx + end - start]
|
423 |
+
]
|
424 |
+
assert actually_ids_to_replace == target_ids_to_replace, (
|
425 |
+
f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
|
426 |
+
f"Expect '{target_ids_to_replace}' for embedding "
|
427 |
+
f"'{name}' but found '{actually_ids_to_replace}'."
|
428 |
+
)
|
429 |
+
|
430 |
+
new_embedding.append(ext_emb)
|
431 |
+
|
432 |
+
s_idx = e_idx + end - start
|
433 |
+
e_idx = s_idx + 1
|
434 |
+
else:
|
435 |
+
e_idx += 1
|
436 |
+
|
437 |
+
if e_idx == len(input_ids):
|
438 |
+
new_embedding.append(embedding[s_idx:e_idx])
|
439 |
+
|
440 |
+
return torch.cat(new_embedding, dim=0)
|
441 |
+
|
442 |
+
def forward(
|
443 |
+
self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None
|
444 |
+
):
|
445 |
+
"""The forward function.
|
446 |
+
|
447 |
+
Args:
|
448 |
+
input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
|
449 |
+
[LENGTH, ].
|
450 |
+
external_embeddings (Optional[List[dict]]): The external
|
451 |
+
embeddings. If not passed, only `self.external_embeddings`
|
452 |
+
will be used. Defaults to None.
|
453 |
+
|
454 |
+
input_ids: shape like [bz, LENGTH] or [LENGTH].
|
455 |
+
"""
|
456 |
+
assert input_ids.ndim in [1, 2]
|
457 |
+
if input_ids.ndim == 1:
|
458 |
+
input_ids = input_ids.unsqueeze(0)
|
459 |
+
|
460 |
+
if external_embeddings is None and not self.external_embeddings:
|
461 |
+
return self.wrapped(input_ids)
|
462 |
+
|
463 |
+
input_ids_fwd = self.replace_input_ids(input_ids)
|
464 |
+
inputs_embeds = self.wrapped(input_ids_fwd)
|
465 |
+
|
466 |
+
vecs = []
|
467 |
+
|
468 |
+
if external_embeddings is None:
|
469 |
+
external_embeddings = []
|
470 |
+
elif isinstance(external_embeddings, dict):
|
471 |
+
external_embeddings = [external_embeddings]
|
472 |
+
embeddings = self.external_embeddings + external_embeddings
|
473 |
+
|
474 |
+
for input_id, embedding in zip(input_ids, inputs_embeds):
|
475 |
+
new_embedding = embedding
|
476 |
+
for external_embedding in embeddings:
|
477 |
+
new_embedding = self.replace_embeddings(
|
478 |
+
input_id, new_embedding, external_embedding
|
479 |
+
)
|
480 |
+
vecs.append(new_embedding)
|
481 |
+
|
482 |
+
return torch.stack(vecs)
|
483 |
+
|
484 |
+
|
485 |
+
def add_tokens(
|
486 |
+
tokenizer,
|
487 |
+
text_encoder,
|
488 |
+
placeholder_tokens: list,
|
489 |
+
initialize_tokens: list = None,
|
490 |
+
num_vectors_per_token: int = 1,
|
491 |
+
):
|
492 |
+
"""Add token for training.
|
493 |
+
|
494 |
+
# TODO: support add tokens as dict, then we can load pretrained tokens.
|
495 |
+
"""
|
496 |
+
if initialize_tokens is not None:
|
497 |
+
assert len(initialize_tokens) == len(
|
498 |
+
placeholder_tokens
|
499 |
+
), "placeholder_token should be the same length as initialize_token"
|
500 |
+
for ii in range(len(placeholder_tokens)):
|
501 |
+
tokenizer.add_placeholder_token(
|
502 |
+
placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token
|
503 |
+
)
|
504 |
+
|
505 |
+
# text_encoder.set_embedding_layer()
|
506 |
+
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
507 |
+
text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(
|
508 |
+
embedding_layer
|
509 |
+
)
|
510 |
+
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
511 |
+
|
512 |
+
assert embedding_layer is not None, (
|
513 |
+
"Do not support get embedding layer for current text encoder. "
|
514 |
+
"Please check your configuration."
|
515 |
+
)
|
516 |
+
initialize_embedding = []
|
517 |
+
if initialize_tokens is not None:
|
518 |
+
for ii in range(len(placeholder_tokens)):
|
519 |
+
init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
|
520 |
+
temp_embedding = embedding_layer.weight[init_id]
|
521 |
+
initialize_embedding.append(
|
522 |
+
temp_embedding[None, ...].repeat(num_vectors_per_token, 1)
|
523 |
+
)
|
524 |
+
else:
|
525 |
+
for ii in range(len(placeholder_tokens)):
|
526 |
+
init_id = tokenizer("a").input_ids[1]
|
527 |
+
temp_embedding = embedding_layer.weight[init_id]
|
528 |
+
len_emb = temp_embedding.shape[0]
|
529 |
+
init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
|
530 |
+
initialize_embedding.append(init_weight)
|
531 |
+
|
532 |
+
# initialize_embedding = torch.cat(initialize_embedding,dim=0)
|
533 |
+
|
534 |
+
token_info_all = []
|
535 |
+
for ii in range(len(placeholder_tokens)):
|
536 |
+
token_info = tokenizer.get_token_info(placeholder_tokens[ii])
|
537 |
+
token_info["embedding"] = initialize_embedding[ii]
|
538 |
+
token_info["trainable"] = True
|
539 |
+
token_info_all.append(token_info)
|
540 |
+
embedding_layer.add_embeddings(token_info_all)
|
iopaint/tests/test_adjust_mask.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from iopaint.helper import adjust_mask
|
3 |
+
from iopaint.tests.utils import current_dir, save_dir
|
4 |
+
|
5 |
+
mask_p = current_dir / "overture-creations-5sI6fQgYIuo_mask.png"
|
6 |
+
|
7 |
+
|
8 |
+
def test_adjust_mask():
|
9 |
+
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
|
10 |
+
res_mask = adjust_mask(mask, 0, "expand")
|
11 |
+
cv2.imwrite(str(save_dir / "adjust_mask_original.png"), res_mask)
|
12 |
+
res_mask = adjust_mask(mask, 40, "expand")
|
13 |
+
cv2.imwrite(str(save_dir / "adjust_mask_expand.png"), res_mask)
|
14 |
+
res_mask = adjust_mask(mask, 20, "shrink")
|
15 |
+
cv2.imwrite(str(save_dir / "adjust_mask_shrink.png"), res_mask)
|
16 |
+
res_mask = adjust_mask(mask, 20, "reverse")
|
17 |
+
cv2.imwrite(str(save_dir / "adjust_mask_reverse.png"), res_mask)
|
iopaint/tests/test_anytext.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from iopaint.tests.utils import check_device, get_config, assert_equal
|
4 |
+
|
5 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import pytest
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from iopaint.model_manager import ModelManager
|
12 |
+
from iopaint.schema import HDStrategy
|
13 |
+
|
14 |
+
current_dir = Path(__file__).parent.absolute().resolve()
|
15 |
+
save_dir = current_dir / "result"
|
16 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.mark.parametrize("device", ["cuda", "mps"])
|
20 |
+
def test_anytext(device):
|
21 |
+
sd_steps = check_device(device)
|
22 |
+
model = ModelManager(
|
23 |
+
name="Sanster/AnyText",
|
24 |
+
device=torch.device(device),
|
25 |
+
disable_nsfw=True,
|
26 |
+
sd_cpu_textencoder=False,
|
27 |
+
)
|
28 |
+
|
29 |
+
cfg = get_config(
|
30 |
+
strategy=HDStrategy.ORIGINAL,
|
31 |
+
prompt='Characters written in chalk on the blackboard that says "DADDY", best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks',
|
32 |
+
negative_prompt="low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture",
|
33 |
+
sd_steps=sd_steps,
|
34 |
+
sd_guidance_scale=9.0,
|
35 |
+
sd_seed=66273235,
|
36 |
+
sd_match_histograms=True
|
37 |
+
)
|
38 |
+
|
39 |
+
assert_equal(
|
40 |
+
model,
|
41 |
+
cfg,
|
42 |
+
f"anytext.png",
|
43 |
+
img_p=current_dir / "anytext_ref.jpg",
|
44 |
+
mask_p=current_dir / "anytext_mask.jpg",
|
45 |
+
)
|
iopaint/tests/test_controlnet.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from iopaint.const import SD_CONTROLNET_CHOICES
|
4 |
+
from iopaint.tests.utils import current_dir, check_device, get_config, assert_equal
|
5 |
+
|
6 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import pytest
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from iopaint.model_manager import ModelManager
|
13 |
+
from iopaint.schema import HDStrategy, SDSampler
|
14 |
+
|
15 |
+
|
16 |
+
model_name = "runwayml/stable-diffusion-inpainting"
|
17 |
+
|
18 |
+
|
19 |
+
def convert_controlnet_method_name(name):
|
20 |
+
return name.replace("/", "--")
|
21 |
+
|
22 |
+
|
23 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
24 |
+
@pytest.mark.parametrize("controlnet_method", [SD_CONTROLNET_CHOICES[0]])
|
25 |
+
def test_runway_sd_1_5(device, controlnet_method):
|
26 |
+
sd_steps = check_device(device)
|
27 |
+
|
28 |
+
model = ModelManager(
|
29 |
+
name=model_name,
|
30 |
+
device=torch.device(device),
|
31 |
+
disable_nsfw=True,
|
32 |
+
sd_cpu_textencoder=device == "cuda",
|
33 |
+
enable_controlnet=True,
|
34 |
+
controlnet_method=controlnet_method,
|
35 |
+
)
|
36 |
+
|
37 |
+
cfg = get_config(
|
38 |
+
prompt="a fox sitting on a bench",
|
39 |
+
sd_steps=sd_steps,
|
40 |
+
enable_controlnet=True,
|
41 |
+
controlnet_conditioning_scale=0.5,
|
42 |
+
controlnet_method=controlnet_method,
|
43 |
+
)
|
44 |
+
name = f"device_{device}"
|
45 |
+
|
46 |
+
assert_equal(
|
47 |
+
model,
|
48 |
+
cfg,
|
49 |
+
f"sd_controlnet_{convert_controlnet_method_name(controlnet_method)}_{name}.png",
|
50 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
51 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
56 |
+
def test_controlnet_switch(device):
|
57 |
+
sd_steps = check_device(device)
|
58 |
+
model = ModelManager(
|
59 |
+
name=model_name,
|
60 |
+
device=torch.device(device),
|
61 |
+
disable_nsfw=True,
|
62 |
+
sd_cpu_textencoder=False,
|
63 |
+
cpu_offload=True,
|
64 |
+
enable_controlnet=True,
|
65 |
+
controlnet_method="lllyasviel/control_v11p_sd15_canny",
|
66 |
+
)
|
67 |
+
cfg = get_config(
|
68 |
+
prompt="a fox sitting on a bench",
|
69 |
+
sd_steps=sd_steps,
|
70 |
+
enable_controlnet=True,
|
71 |
+
controlnet_method="lllyasviel/control_v11f1p_sd15_depth",
|
72 |
+
)
|
73 |
+
|
74 |
+
assert_equal(
|
75 |
+
model,
|
76 |
+
cfg,
|
77 |
+
f"controlnet_switch_canny_to_depth_device_{device}.png",
|
78 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
79 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
80 |
+
fx=1.2
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
85 |
+
@pytest.mark.parametrize(
|
86 |
+
"local_file", ["sd-v1-5-inpainting.ckpt", "v1-5-pruned-emaonly.safetensors"]
|
87 |
+
)
|
88 |
+
def test_local_file_path(device, local_file):
|
89 |
+
sd_steps = check_device(device)
|
90 |
+
|
91 |
+
controlnet_kwargs = dict(
|
92 |
+
enable_controlnet=True,
|
93 |
+
controlnet_method=SD_CONTROLNET_CHOICES[0],
|
94 |
+
)
|
95 |
+
|
96 |
+
model = ModelManager(
|
97 |
+
name=local_file,
|
98 |
+
device=torch.device(device),
|
99 |
+
disable_nsfw=True,
|
100 |
+
sd_cpu_textencoder=False,
|
101 |
+
cpu_offload=True,
|
102 |
+
**controlnet_kwargs,
|
103 |
+
)
|
104 |
+
cfg = get_config(
|
105 |
+
prompt="a fox sitting on a bench",
|
106 |
+
sd_steps=sd_steps,
|
107 |
+
**controlnet_kwargs,
|
108 |
+
)
|
109 |
+
|
110 |
+
name = f"device_{device}"
|
111 |
+
|
112 |
+
assert_equal(
|
113 |
+
model,
|
114 |
+
cfg,
|
115 |
+
f"{convert_controlnet_method_name(controlnet_kwargs['controlnet_method'])}_local_model_{name}.png",
|
116 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
117 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
118 |
+
)
|
iopaint/tests/test_instruct_pix2pix.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from iopaint.model_manager import ModelManager
|
7 |
+
from iopaint.schema import HDStrategy
|
8 |
+
from iopaint.tests.utils import get_config, check_device, assert_equal, current_dir
|
9 |
+
|
10 |
+
model_name = "timbrooks/instruct-pix2pix"
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
14 |
+
@pytest.mark.parametrize("disable_nsfw", [True, False])
|
15 |
+
@pytest.mark.parametrize("cpu_offload", [False, True])
|
16 |
+
def test_instruct_pix2pix(device, disable_nsfw, cpu_offload):
|
17 |
+
sd_steps = check_device(device)
|
18 |
+
model = ModelManager(
|
19 |
+
name=model_name,
|
20 |
+
device=torch.device(device),
|
21 |
+
disable_nsfw=disable_nsfw,
|
22 |
+
sd_cpu_textencoder=False,
|
23 |
+
cpu_offload=cpu_offload,
|
24 |
+
)
|
25 |
+
cfg = get_config(
|
26 |
+
strategy=HDStrategy.ORIGINAL,
|
27 |
+
prompt="What if it were snowing?",
|
28 |
+
sd_steps=sd_steps
|
29 |
+
)
|
30 |
+
|
31 |
+
name = f"device_{device}_disnsfw_{disable_nsfw}_cpu_offload_{cpu_offload}"
|
32 |
+
|
33 |
+
assert_equal(
|
34 |
+
model,
|
35 |
+
cfg,
|
36 |
+
f"instruct_pix2pix_{name}.png",
|
37 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
38 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
39 |
+
fx=1.3,
|
40 |
+
)
|
iopaint/tests/test_load_img.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from iopaint.helper import load_img
|
2 |
+
from iopaint.tests.utils import current_dir
|
3 |
+
|
4 |
+
png_img_p = current_dir / "image.png"
|
5 |
+
jpg_img_p = current_dir / "bunny.jpeg"
|
6 |
+
|
7 |
+
|
8 |
+
def test_load_png_image():
|
9 |
+
with open(png_img_p, "rb") as f:
|
10 |
+
np_img, alpha_channel = load_img(f.read())
|
11 |
+
assert np_img.shape == (256, 256, 3)
|
12 |
+
assert alpha_channel.shape == (256, 256)
|
13 |
+
|
14 |
+
|
15 |
+
def test_load_jpg_image():
|
16 |
+
with open(jpg_img_p, "rb") as f:
|
17 |
+
np_img, alpha_channel = load_img(f.read())
|
18 |
+
assert np_img.shape == (394, 448, 3)
|
19 |
+
assert alpha_channel is None
|
iopaint/tests/test_low_mem.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from loguru import logger
|
4 |
+
|
5 |
+
from iopaint.tests.utils import check_device, get_config, assert_equal, current_dir
|
6 |
+
|
7 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
8 |
+
|
9 |
+
import pytest
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from iopaint.model_manager import ModelManager
|
13 |
+
from iopaint.schema import HDStrategy, SDSampler, FREEUConfig
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize("device", ["cuda", "mps"])
|
17 |
+
def test_runway_sd_1_5_low_mem(device):
|
18 |
+
sd_steps = check_device(device)
|
19 |
+
model = ModelManager(
|
20 |
+
name="runwayml/stable-diffusion-inpainting",
|
21 |
+
device=torch.device(device),
|
22 |
+
disable_nsfw=True,
|
23 |
+
sd_cpu_textencoder=False,
|
24 |
+
low_mem=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
all_samplers = [member.value for member in SDSampler.__members__.values()]
|
28 |
+
print(all_samplers)
|
29 |
+
cfg = get_config(
|
30 |
+
strategy=HDStrategy.ORIGINAL,
|
31 |
+
prompt="a fox sitting on a bench",
|
32 |
+
sd_steps=sd_steps,
|
33 |
+
sd_sampler=SDSampler.ddim,
|
34 |
+
)
|
35 |
+
|
36 |
+
name = f"device_{device}"
|
37 |
+
|
38 |
+
assert_equal(
|
39 |
+
model,
|
40 |
+
cfg,
|
41 |
+
f"runway_sd_{name}_low_mem.png",
|
42 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
43 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
48 |
+
@pytest.mark.parametrize("sampler", [SDSampler.lcm])
|
49 |
+
def test_runway_sd_lcm_lora_low_mem(device, sampler):
|
50 |
+
check_device(device)
|
51 |
+
|
52 |
+
sd_steps = 5
|
53 |
+
model = ModelManager(
|
54 |
+
name="runwayml/stable-diffusion-inpainting",
|
55 |
+
device=torch.device(device),
|
56 |
+
disable_nsfw=True,
|
57 |
+
sd_cpu_textencoder=False,
|
58 |
+
low_mem=True,
|
59 |
+
)
|
60 |
+
cfg = get_config(
|
61 |
+
strategy=HDStrategy.ORIGINAL,
|
62 |
+
prompt="face of a fox, sitting on a bench",
|
63 |
+
sd_steps=sd_steps,
|
64 |
+
sd_guidance_scale=2,
|
65 |
+
sd_lcm_lora=True,
|
66 |
+
)
|
67 |
+
cfg.sd_sampler = sampler
|
68 |
+
|
69 |
+
assert_equal(
|
70 |
+
model,
|
71 |
+
cfg,
|
72 |
+
f"runway_sd_1_5_lcm_lora_device_{device}_low_mem.png",
|
73 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
74 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
79 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
80 |
+
def test_runway_sd_freeu(device, sampler):
|
81 |
+
sd_steps = check_device(device)
|
82 |
+
model = ModelManager(
|
83 |
+
name="runwayml/stable-diffusion-inpainting",
|
84 |
+
device=torch.device(device),
|
85 |
+
disable_nsfw=True,
|
86 |
+
sd_cpu_textencoder=False,
|
87 |
+
low_mem=True,
|
88 |
+
)
|
89 |
+
cfg = get_config(
|
90 |
+
strategy=HDStrategy.ORIGINAL,
|
91 |
+
prompt="face of a fox, sitting on a bench",
|
92 |
+
sd_steps=sd_steps,
|
93 |
+
sd_guidance_scale=7.5,
|
94 |
+
sd_freeu=True,
|
95 |
+
sd_freeu_config=FREEUConfig(),
|
96 |
+
)
|
97 |
+
cfg.sd_sampler = sampler
|
98 |
+
|
99 |
+
assert_equal(
|
100 |
+
model,
|
101 |
+
cfg,
|
102 |
+
f"runway_sd_1_5_freeu_device_{device}_low_mem.png",
|
103 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
104 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
109 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
110 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
111 |
+
def test_runway_norm_sd_model(device, strategy, sampler):
|
112 |
+
sd_steps = check_device(device)
|
113 |
+
model = ModelManager(
|
114 |
+
name="runwayml/stable-diffusion-v1-5",
|
115 |
+
device=torch.device(device),
|
116 |
+
disable_nsfw=True,
|
117 |
+
sd_cpu_textencoder=False,
|
118 |
+
low_mem=True,
|
119 |
+
)
|
120 |
+
cfg = get_config(
|
121 |
+
strategy=strategy, prompt="face of a fox, sitting on a bench", sd_steps=sd_steps
|
122 |
+
)
|
123 |
+
cfg.sd_sampler = sampler
|
124 |
+
|
125 |
+
assert_equal(
|
126 |
+
model,
|
127 |
+
cfg,
|
128 |
+
f"runway_{device}_norm_sd_model_device_{device}_low_mem.png",
|
129 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
130 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
131 |
+
)
|
iopaint/tests/test_match_histograms.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from iopaint.model_manager import ModelManager
|
5 |
+
from iopaint.schema import SDSampler, HDStrategy
|
6 |
+
from iopaint.tests.utils import check_device, get_config, assert_equal, current_dir
|
7 |
+
|
8 |
+
|
9 |
+
@pytest.mark.parametrize("device", ["cuda", "mps"])
|
10 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
11 |
+
def test_sd_match_histograms(device, sampler):
|
12 |
+
sd_steps = check_device(device)
|
13 |
+
|
14 |
+
model = ModelManager(
|
15 |
+
name="runwayml/stable-diffusion-inpainting",
|
16 |
+
device=torch.device(device),
|
17 |
+
disable_nsfw=True,
|
18 |
+
sd_cpu_textencoder=False,
|
19 |
+
)
|
20 |
+
cfg = get_config(
|
21 |
+
strategy=HDStrategy.ORIGINAL,
|
22 |
+
prompt="face of a fox, sitting on a bench",
|
23 |
+
sd_steps=sd_steps,
|
24 |
+
sd_guidance_scale=7.5,
|
25 |
+
sd_lcm_lora=False,
|
26 |
+
sd_match_histograms=True,
|
27 |
+
sd_sampler=sampler
|
28 |
+
)
|
29 |
+
|
30 |
+
assert_equal(
|
31 |
+
model,
|
32 |
+
cfg,
|
33 |
+
f"runway_sd_1_5_device_{device}_match_histograms.png",
|
34 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
35 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
36 |
+
)
|
iopaint/tests/test_model.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from iopaint.model_manager import ModelManager
|
5 |
+
from iopaint.schema import HDStrategy, LDMSampler
|
6 |
+
from iopaint.tests.utils import assert_equal, get_config, current_dir, check_device
|
7 |
+
|
8 |
+
|
9 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
10 |
+
@pytest.mark.parametrize(
|
11 |
+
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
12 |
+
)
|
13 |
+
def test_lama(device, strategy):
|
14 |
+
check_device(device)
|
15 |
+
model = ModelManager(name="lama", device=device)
|
16 |
+
assert_equal(
|
17 |
+
model,
|
18 |
+
get_config(strategy=strategy),
|
19 |
+
f"lama_{strategy[0].upper() + strategy[1:]}_result.png",
|
20 |
+
)
|
21 |
+
|
22 |
+
fx = 1.3
|
23 |
+
assert_equal(
|
24 |
+
model,
|
25 |
+
get_config(strategy=strategy),
|
26 |
+
f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png",
|
27 |
+
fx=1.3,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
32 |
+
@pytest.mark.parametrize(
|
33 |
+
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
34 |
+
)
|
35 |
+
@pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms])
|
36 |
+
def test_ldm(device, strategy, ldm_sampler):
|
37 |
+
check_device(device)
|
38 |
+
model = ModelManager(name="ldm", device=device)
|
39 |
+
cfg = get_config(strategy=strategy, ldm_sampler=ldm_sampler)
|
40 |
+
assert_equal(
|
41 |
+
model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png"
|
42 |
+
)
|
43 |
+
|
44 |
+
fx = 1.3
|
45 |
+
assert_equal(
|
46 |
+
model,
|
47 |
+
cfg,
|
48 |
+
f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png",
|
49 |
+
fx=fx,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
54 |
+
@pytest.mark.parametrize(
|
55 |
+
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
56 |
+
)
|
57 |
+
@pytest.mark.parametrize("zits_wireframe", [False, True])
|
58 |
+
def test_zits(device, strategy, zits_wireframe):
|
59 |
+
check_device(device)
|
60 |
+
model = ModelManager(name="zits", device=device)
|
61 |
+
cfg = get_config(strategy=strategy, zits_wireframe=zits_wireframe)
|
62 |
+
assert_equal(
|
63 |
+
model,
|
64 |
+
cfg,
|
65 |
+
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png",
|
66 |
+
)
|
67 |
+
|
68 |
+
fx = 1.3
|
69 |
+
assert_equal(
|
70 |
+
model,
|
71 |
+
cfg,
|
72 |
+
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
73 |
+
fx=fx,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
78 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
79 |
+
@pytest.mark.parametrize("no_half", [True, False])
|
80 |
+
def test_mat(device, strategy, no_half):
|
81 |
+
check_device(device)
|
82 |
+
model = ModelManager(name="mat", device=device, no_half=no_half)
|
83 |
+
cfg = get_config(strategy=strategy)
|
84 |
+
|
85 |
+
assert_equal(
|
86 |
+
model,
|
87 |
+
cfg,
|
88 |
+
f"mat_{strategy.capitalize()}_result.png",
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
93 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
94 |
+
def test_fcf(device, strategy):
|
95 |
+
check_device(device)
|
96 |
+
model = ModelManager(name="fcf", device=device)
|
97 |
+
cfg = get_config(strategy=strategy)
|
98 |
+
|
99 |
+
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=2, fy=2)
|
100 |
+
assert_equal(model, cfg, f"fcf_{strategy.capitalize()}_result.png", fx=3.8, fy=2)
|
101 |
+
|
102 |
+
|
103 |
+
@pytest.mark.parametrize(
|
104 |
+
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
105 |
+
)
|
106 |
+
@pytest.mark.parametrize("cv2_flag", ["INPAINT_NS", "INPAINT_TELEA"])
|
107 |
+
@pytest.mark.parametrize("cv2_radius", [3, 15])
|
108 |
+
def test_cv2(strategy, cv2_flag, cv2_radius):
|
109 |
+
model = ModelManager(
|
110 |
+
name="cv2",
|
111 |
+
device=torch.device("cpu"),
|
112 |
+
)
|
113 |
+
cfg = get_config(strategy=strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius)
|
114 |
+
assert_equal(
|
115 |
+
model,
|
116 |
+
cfg,
|
117 |
+
f"cv2_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png",
|
118 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
119 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
124 |
+
@pytest.mark.parametrize(
|
125 |
+
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
126 |
+
)
|
127 |
+
def test_manga(device, strategy):
|
128 |
+
check_device(device)
|
129 |
+
model = ModelManager(
|
130 |
+
name="manga",
|
131 |
+
device=torch.device(device),
|
132 |
+
)
|
133 |
+
cfg = get_config(strategy=strategy)
|
134 |
+
assert_equal(
|
135 |
+
model,
|
136 |
+
cfg,
|
137 |
+
f"manga_{strategy.capitalize()}.png",
|
138 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
139 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
144 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
145 |
+
def test_mi_gan(device, strategy):
|
146 |
+
check_device(device)
|
147 |
+
model = ModelManager(
|
148 |
+
name="migan",
|
149 |
+
device=torch.device(device),
|
150 |
+
)
|
151 |
+
cfg = get_config(strategy=strategy)
|
152 |
+
assert_equal(
|
153 |
+
model,
|
154 |
+
cfg,
|
155 |
+
f"migan_device_{device}.png",
|
156 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
157 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
158 |
+
fx=1.5,
|
159 |
+
fy=1.7
|
160 |
+
)
|
iopaint/tests/test_model_md5.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def test_load_model():
|
2 |
+
from iopaint.plugins import InteractiveSeg
|
3 |
+
from iopaint.model_manager import ModelManager
|
4 |
+
|
5 |
+
interactive_seg_model = InteractiveSeg("vit_l", "cpu")
|
6 |
+
|
7 |
+
models = ["lama", "ldm", "zits", "mat", "fcf", "manga", "migan"]
|
8 |
+
for m in models:
|
9 |
+
ModelManager(
|
10 |
+
name=m,
|
11 |
+
device="cpu",
|
12 |
+
no_half=False,
|
13 |
+
disable_nsfw=False,
|
14 |
+
sd_cpu_textencoder=True,
|
15 |
+
cpu_offload=True,
|
16 |
+
)
|
iopaint/tests/test_model_switch.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from iopaint.schema import InpaintRequest
|
4 |
+
|
5 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from iopaint.model_manager import ModelManager
|
10 |
+
|
11 |
+
|
12 |
+
def test_model_switch():
|
13 |
+
model = ModelManager(
|
14 |
+
name="runwayml/stable-diffusion-inpainting",
|
15 |
+
enable_controlnet=True,
|
16 |
+
controlnet_method="lllyasviel/control_v11p_sd15_canny",
|
17 |
+
device=torch.device("mps"),
|
18 |
+
disable_nsfw=True,
|
19 |
+
sd_cpu_textencoder=True,
|
20 |
+
cpu_offload=False,
|
21 |
+
)
|
22 |
+
|
23 |
+
model.switch("lama")
|
24 |
+
|
25 |
+
|
26 |
+
def test_controlnet_switch_onoff(caplog):
|
27 |
+
name = "runwayml/stable-diffusion-inpainting"
|
28 |
+
model = ModelManager(
|
29 |
+
name=name,
|
30 |
+
enable_controlnet=True,
|
31 |
+
controlnet_method="lllyasviel/control_v11p_sd15_canny",
|
32 |
+
device=torch.device("mps"),
|
33 |
+
disable_nsfw=True,
|
34 |
+
sd_cpu_textencoder=True,
|
35 |
+
cpu_offload=False,
|
36 |
+
)
|
37 |
+
|
38 |
+
model.switch_controlnet_method(
|
39 |
+
InpaintRequest(
|
40 |
+
name=name,
|
41 |
+
enable_controlnet=False,
|
42 |
+
)
|
43 |
+
)
|
44 |
+
|
45 |
+
assert "Disable controlnet" in caplog.text
|
46 |
+
|
47 |
+
|
48 |
+
def test_switch_controlnet_method(caplog):
|
49 |
+
name = "runwayml/stable-diffusion-inpainting"
|
50 |
+
old_method = "lllyasviel/control_v11p_sd15_canny"
|
51 |
+
new_method = "lllyasviel/control_v11p_sd15_openpose"
|
52 |
+
model = ModelManager(
|
53 |
+
name=name,
|
54 |
+
enable_controlnet=True,
|
55 |
+
controlnet_method=old_method,
|
56 |
+
device=torch.device("mps"),
|
57 |
+
disable_nsfw=True,
|
58 |
+
sd_cpu_textencoder=True,
|
59 |
+
cpu_offload=False,
|
60 |
+
)
|
61 |
+
|
62 |
+
model.switch_controlnet_method(
|
63 |
+
InpaintRequest(
|
64 |
+
name=name,
|
65 |
+
enable_controlnet=True,
|
66 |
+
controlnet_method=new_method,
|
67 |
+
)
|
68 |
+
)
|
69 |
+
|
70 |
+
assert f"Switch Controlnet method from {old_method} to {new_method}" in caplog.text
|
iopaint/tests/test_outpainting.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from iopaint.tests.utils import current_dir, check_device
|
4 |
+
|
5 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import pytest
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from iopaint.model_manager import ModelManager
|
12 |
+
from iopaint.schema import HDStrategy, SDSampler
|
13 |
+
from iopaint.tests.test_model import get_config, assert_equal
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize("name", ["runwayml/stable-diffusion-inpainting"])
|
17 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
18 |
+
@pytest.mark.parametrize(
|
19 |
+
"rect",
|
20 |
+
[
|
21 |
+
[0, -100, 512, 512 - 128 + 100],
|
22 |
+
[0, 128, 512, 512 - 128 + 100],
|
23 |
+
[128, 0, 512 - 128 + 100, 512],
|
24 |
+
[-100, 0, 512 - 128 + 100, 512],
|
25 |
+
[0, 0, 512, 512 + 200],
|
26 |
+
[0, 0, 512 + 200, 512],
|
27 |
+
[-100, -100, 512 + 200, 512 + 200],
|
28 |
+
],
|
29 |
+
)
|
30 |
+
def test_outpainting(name, device, rect):
|
31 |
+
sd_steps = check_device(device)
|
32 |
+
|
33 |
+
model = ModelManager(
|
34 |
+
name=name,
|
35 |
+
device=torch.device(device),
|
36 |
+
disable_nsfw=True,
|
37 |
+
sd_cpu_textencoder=False,
|
38 |
+
)
|
39 |
+
cfg = get_config(
|
40 |
+
prompt="a dog sitting on a bench in the park",
|
41 |
+
sd_steps=sd_steps,
|
42 |
+
use_extender=True,
|
43 |
+
extender_x=rect[0],
|
44 |
+
extender_y=rect[1],
|
45 |
+
extender_width=rect[2],
|
46 |
+
extender_height=rect[3],
|
47 |
+
sd_guidance_scale=8.0,
|
48 |
+
sd_sampler=SDSampler.dpm_plus_plus_2m,
|
49 |
+
)
|
50 |
+
|
51 |
+
assert_equal(
|
52 |
+
model,
|
53 |
+
cfg,
|
54 |
+
f"{name.replace('/', '--')}_outpainting_{'_'.join(map(str, rect))}_device_{device}.png",
|
55 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
56 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
@pytest.mark.parametrize("name", ["kandinsky-community/kandinsky-2-2-decoder-inpaint"])
|
61 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
62 |
+
@pytest.mark.parametrize(
|
63 |
+
"rect",
|
64 |
+
[
|
65 |
+
[-128, -128, 768, 768],
|
66 |
+
],
|
67 |
+
)
|
68 |
+
def test_kandinsky_outpainting(name, device, rect):
|
69 |
+
sd_steps = check_device(device)
|
70 |
+
|
71 |
+
model = ModelManager(
|
72 |
+
name=name,
|
73 |
+
device=torch.device(device),
|
74 |
+
disable_nsfw=True,
|
75 |
+
sd_cpu_textencoder=False,
|
76 |
+
)
|
77 |
+
cfg = get_config(
|
78 |
+
prompt="a cat",
|
79 |
+
negative_prompt="lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature",
|
80 |
+
sd_steps=sd_steps,
|
81 |
+
use_extender=True,
|
82 |
+
extender_x=rect[0],
|
83 |
+
extender_y=rect[1],
|
84 |
+
extender_width=rect[2],
|
85 |
+
extender_height=rect[3],
|
86 |
+
sd_guidance_scale=7,
|
87 |
+
sd_sampler=SDSampler.dpm_plus_plus_2m,
|
88 |
+
)
|
89 |
+
|
90 |
+
assert_equal(
|
91 |
+
model,
|
92 |
+
cfg,
|
93 |
+
f"{name.replace('/', '--')}_outpainting_{'_'.join(map(str, rect))}_device_{device}.png",
|
94 |
+
img_p=current_dir / "cat.png",
|
95 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
96 |
+
fx=1,
|
97 |
+
fy=1,
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
@pytest.mark.parametrize("name", ["Sanster/PowerPaint-V1-stable-diffusion-inpainting"])
|
102 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
103 |
+
@pytest.mark.parametrize(
|
104 |
+
"rect",
|
105 |
+
[
|
106 |
+
[-100, -100, 512 + 200, 512 + 200],
|
107 |
+
],
|
108 |
+
)
|
109 |
+
def test_powerpaint_outpainting(name, device, rect):
|
110 |
+
sd_steps = check_device(device)
|
111 |
+
|
112 |
+
model = ModelManager(
|
113 |
+
name=name,
|
114 |
+
device=torch.device(device),
|
115 |
+
disable_nsfw=True,
|
116 |
+
sd_cpu_textencoder=False,
|
117 |
+
low_mem=True
|
118 |
+
)
|
119 |
+
cfg = get_config(
|
120 |
+
prompt="a dog sitting on a bench in the park",
|
121 |
+
sd_steps=sd_steps,
|
122 |
+
use_extender=True,
|
123 |
+
extender_x=rect[0],
|
124 |
+
extender_y=rect[1],
|
125 |
+
extender_width=rect[2],
|
126 |
+
extender_height=rect[3],
|
127 |
+
sd_guidance_scale=8.0,
|
128 |
+
sd_sampler=SDSampler.dpm_plus_plus_2m,
|
129 |
+
powerpaint_task="outpainting",
|
130 |
+
)
|
131 |
+
|
132 |
+
assert_equal(
|
133 |
+
model,
|
134 |
+
cfg,
|
135 |
+
f"{name.replace('/', '--')}_outpainting_{'_'.join(map(str, rect))}_device_{device}.png",
|
136 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
137 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
138 |
+
)
|
iopaint/tests/test_paint_by_example.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import pytest
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
from iopaint.model_manager import ModelManager
|
6 |
+
from iopaint.schema import HDStrategy
|
7 |
+
from iopaint.tests.utils import (
|
8 |
+
current_dir,
|
9 |
+
get_config,
|
10 |
+
get_data,
|
11 |
+
save_dir,
|
12 |
+
check_device,
|
13 |
+
)
|
14 |
+
|
15 |
+
model_name = "Fantasy-Studio/Paint-by-Example"
|
16 |
+
|
17 |
+
|
18 |
+
def assert_equal(
|
19 |
+
model,
|
20 |
+
config,
|
21 |
+
save_name: str,
|
22 |
+
fx: float = 1,
|
23 |
+
fy: float = 1,
|
24 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
25 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
26 |
+
example_p=current_dir / "bunny.jpeg",
|
27 |
+
):
|
28 |
+
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
|
29 |
+
|
30 |
+
example_image = cv2.imread(str(example_p))
|
31 |
+
example_image = cv2.cvtColor(example_image, cv2.COLOR_BGRA2RGB)
|
32 |
+
example_image = cv2.resize(
|
33 |
+
example_image, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA
|
34 |
+
)
|
35 |
+
|
36 |
+
print(f"Input image shape: {img.shape}, example_image: {example_image.shape}")
|
37 |
+
config.paint_by_example_example_image = Image.fromarray(example_image)
|
38 |
+
res = model(img, mask, config)
|
39 |
+
cv2.imwrite(str(save_dir / save_name), res)
|
40 |
+
|
41 |
+
|
42 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
43 |
+
def test_paint_by_example(device):
|
44 |
+
sd_steps = check_device(device)
|
45 |
+
model = ModelManager(name=model_name, device=device, disable_nsfw=True)
|
46 |
+
cfg = get_config(strategy=HDStrategy.ORIGINAL, sd_steps=sd_steps)
|
47 |
+
assert_equal(
|
48 |
+
model,
|
49 |
+
cfg,
|
50 |
+
f"paint_by_example_device_{device}.png",
|
51 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
52 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
53 |
+
fy=0.9,
|
54 |
+
fx=1.3,
|
55 |
+
)
|
iopaint/tests/test_plugins.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from iopaint.helper import encode_pil_to_base64, gen_frontend_mask
|
7 |
+
from iopaint.plugins.anime_seg import AnimeSeg
|
8 |
+
from iopaint.schema import RunPluginRequest, RemoveBGModel
|
9 |
+
from iopaint.tests.utils import check_device, current_dir, save_dir
|
10 |
+
|
11 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
12 |
+
|
13 |
+
import cv2
|
14 |
+
import pytest
|
15 |
+
|
16 |
+
from iopaint.plugins import (
|
17 |
+
RemoveBG,
|
18 |
+
RealESRGANUpscaler,
|
19 |
+
GFPGANPlugin,
|
20 |
+
RestoreFormerPlugin,
|
21 |
+
InteractiveSeg,
|
22 |
+
)
|
23 |
+
|
24 |
+
img_p = current_dir / "bunny.jpeg"
|
25 |
+
img_bytes = open(img_p, "rb").read()
|
26 |
+
bgr_img = cv2.imread(str(img_p))
|
27 |
+
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
28 |
+
rgb_img_base64 = encode_pil_to_base64(Image.fromarray(rgb_img), 100, {})
|
29 |
+
bgr_img_base64 = encode_pil_to_base64(Image.fromarray(bgr_img), 100, {})
|
30 |
+
|
31 |
+
|
32 |
+
def _save(img, name):
|
33 |
+
cv2.imwrite(str(save_dir / name), img)
|
34 |
+
|
35 |
+
|
36 |
+
def test_remove_bg():
|
37 |
+
model = RemoveBG(RemoveBGModel.briaai_rmbg_1_4)
|
38 |
+
rgba_np_img = model.gen_image(
|
39 |
+
rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
|
40 |
+
)
|
41 |
+
res = cv2.cvtColor(rgba_np_img, cv2.COLOR_RGBA2BGRA)
|
42 |
+
_save(res, "test_remove_bg.png")
|
43 |
+
|
44 |
+
bgr_np_img = model.gen_mask(
|
45 |
+
rgb_img, RunPluginRequest(name=RemoveBG.name, image=rgb_img_base64)
|
46 |
+
)
|
47 |
+
|
48 |
+
res_mask = gen_frontend_mask(bgr_np_img)
|
49 |
+
_save(res_mask, "test_remove_bg_frontend_mask.png")
|
50 |
+
|
51 |
+
assert len(bgr_np_img.shape) == 2
|
52 |
+
_save(bgr_np_img, "test_remove_bg_mask.jpeg")
|
53 |
+
|
54 |
+
|
55 |
+
def test_anime_seg():
|
56 |
+
model = AnimeSeg()
|
57 |
+
img = cv2.imread(str(current_dir / "anime_test.png"))
|
58 |
+
img_base64 = encode_pil_to_base64(Image.fromarray(img), 100, {})
|
59 |
+
res = model.gen_image(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
|
60 |
+
assert len(res.shape) == 3
|
61 |
+
assert res.shape[-1] == 4
|
62 |
+
_save(res, "test_anime_seg.png")
|
63 |
+
|
64 |
+
res = model.gen_mask(img, RunPluginRequest(name=AnimeSeg.name, image=img_base64))
|
65 |
+
assert len(res.shape) == 2
|
66 |
+
_save(res, "test_anime_seg_mask.png")
|
67 |
+
|
68 |
+
|
69 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
70 |
+
def test_upscale(device):
|
71 |
+
check_device(device)
|
72 |
+
model = RealESRGANUpscaler("realesr-general-x4v3", device)
|
73 |
+
res = model.gen_image(
|
74 |
+
rgb_img,
|
75 |
+
RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=2),
|
76 |
+
)
|
77 |
+
_save(res, f"test_upscale_x2_{device}.png")
|
78 |
+
|
79 |
+
res = model.gen_image(
|
80 |
+
rgb_img,
|
81 |
+
RunPluginRequest(name=RealESRGANUpscaler.name, image=rgb_img_base64, scale=4),
|
82 |
+
)
|
83 |
+
_save(res, f"test_upscale_x4_{device}.png")
|
84 |
+
|
85 |
+
|
86 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
87 |
+
def test_gfpgan(device):
|
88 |
+
check_device(device)
|
89 |
+
model = GFPGANPlugin(device)
|
90 |
+
res = model.gen_image(
|
91 |
+
rgb_img, RunPluginRequest(name=GFPGANPlugin.name, image=rgb_img_base64)
|
92 |
+
)
|
93 |
+
_save(res, f"test_gfpgan_{device}.png")
|
94 |
+
|
95 |
+
|
96 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
97 |
+
def test_restoreformer(device):
|
98 |
+
check_device(device)
|
99 |
+
model = RestoreFormerPlugin(device)
|
100 |
+
res = model.gen_image(
|
101 |
+
rgb_img, RunPluginRequest(name=RestoreFormerPlugin.name, image=rgb_img_base64)
|
102 |
+
)
|
103 |
+
_save(res, f"test_restoreformer_{device}.png")
|
104 |
+
|
105 |
+
|
106 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
107 |
+
def test_segment_anything(device):
|
108 |
+
check_device(device)
|
109 |
+
model = InteractiveSeg("vit_l", device)
|
110 |
+
new_mask = model.gen_mask(
|
111 |
+
rgb_img,
|
112 |
+
RunPluginRequest(
|
113 |
+
name=InteractiveSeg.name,
|
114 |
+
image=rgb_img_base64,
|
115 |
+
clicks=([[448 // 2, 394 // 2, 1]]),
|
116 |
+
),
|
117 |
+
)
|
118 |
+
|
119 |
+
save_name = f"test_segment_anything_{device}.png"
|
120 |
+
_save(new_mask, save_name)
|
iopaint/tests/test_save_exif.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import tempfile
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from iopaint.helper import pil_to_bytes, load_img
|
9 |
+
|
10 |
+
current_dir = Path(__file__).parent.absolute().resolve()
|
11 |
+
|
12 |
+
|
13 |
+
def print_exif(exif):
|
14 |
+
for k, v in exif.items():
|
15 |
+
print(f"{k}: {v}")
|
16 |
+
|
17 |
+
|
18 |
+
def extra_info(img_p: Path):
|
19 |
+
ext = img_p.suffix.strip(".")
|
20 |
+
img_bytes = img_p.read_bytes()
|
21 |
+
np_img, _, infos = load_img(img_bytes, False, True)
|
22 |
+
res_pil_bytes = pil_to_bytes(Image.fromarray(np_img), ext=ext, infos=infos)
|
23 |
+
res_img = Image.open(io.BytesIO(res_pil_bytes))
|
24 |
+
return infos, res_img.info, res_pil_bytes
|
25 |
+
|
26 |
+
|
27 |
+
def assert_keys(keys: List[str], infos, res_infos):
|
28 |
+
for k in keys:
|
29 |
+
assert k in infos
|
30 |
+
assert k in res_infos
|
31 |
+
assert infos[k] == res_infos[k]
|
32 |
+
|
33 |
+
|
34 |
+
def run_test(file_path, keys):
|
35 |
+
infos, res_infos, res_pil_bytes = extra_info(file_path)
|
36 |
+
assert_keys(keys, infos, res_infos)
|
37 |
+
with tempfile.NamedTemporaryFile("wb", suffix=file_path.suffix) as temp_file:
|
38 |
+
temp_file.write(res_pil_bytes)
|
39 |
+
temp_file.flush()
|
40 |
+
infos, res_infos, res_pil_bytes = extra_info(Path(temp_file.name))
|
41 |
+
assert_keys(keys, infos, res_infos)
|
42 |
+
|
43 |
+
|
44 |
+
def test_png_icc_profile_png():
|
45 |
+
run_test(current_dir / "icc_profile_test.png", ["icc_profile", "exif"])
|
46 |
+
|
47 |
+
|
48 |
+
def test_png_icc_profile_jpeg():
|
49 |
+
run_test(current_dir / "icc_profile_test.jpg", ["icc_profile", "exif"])
|
50 |
+
|
51 |
+
|
52 |
+
def test_jpeg():
|
53 |
+
jpg_img_p = current_dir / "bunny.jpeg"
|
54 |
+
run_test(jpg_img_p, ["dpi", "exif"])
|
55 |
+
|
56 |
+
|
57 |
+
def test_png_parameter():
|
58 |
+
jpg_img_p = current_dir / "png_parameter_test.png"
|
59 |
+
run_test(jpg_img_p, ["parameters"])
|
iopaint/tests/test_sd_model.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from loguru import logger
|
4 |
+
|
5 |
+
from iopaint.tests.utils import check_device, get_config, assert_equal
|
6 |
+
|
7 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import pytest
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from iopaint.model_manager import ModelManager
|
14 |
+
from iopaint.schema import HDStrategy, SDSampler, FREEUConfig
|
15 |
+
|
16 |
+
current_dir = Path(__file__).parent.absolute().resolve()
|
17 |
+
save_dir = current_dir / "result"
|
18 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.mark.parametrize("device", ["cuda", "mps"])
|
22 |
+
def test_runway_sd_1_5_all_samplers(device):
|
23 |
+
sd_steps = check_device(device)
|
24 |
+
model = ModelManager(
|
25 |
+
name="runwayml/stable-diffusion-inpainting",
|
26 |
+
device=torch.device(device),
|
27 |
+
disable_nsfw=True,
|
28 |
+
sd_cpu_textencoder=False,
|
29 |
+
)
|
30 |
+
|
31 |
+
all_samplers = [member.value for member in SDSampler.__members__.values()]
|
32 |
+
print(all_samplers)
|
33 |
+
for sampler in all_samplers:
|
34 |
+
print(f"Testing sampler {sampler}")
|
35 |
+
if (
|
36 |
+
sampler
|
37 |
+
in [SDSampler.dpm2_karras, SDSampler.dpm2_a_karras, SDSampler.lms_karras]
|
38 |
+
and device == "mps"
|
39 |
+
):
|
40 |
+
# diffusers 0.25.0 still has bug on these sampler on mps, wait main branch released to fix it
|
41 |
+
logger.warning(
|
42 |
+
"skip dpm2_karras on mps, diffusers does not support it on mps. TypeError: Cannot convert a MPS Tensor to float64 dtype as the MPS framework doesn't support float64. Please use float32 instead."
|
43 |
+
)
|
44 |
+
continue
|
45 |
+
cfg = get_config(
|
46 |
+
strategy=HDStrategy.ORIGINAL,
|
47 |
+
prompt="a fox sitting on a bench",
|
48 |
+
sd_steps=sd_steps,
|
49 |
+
sd_sampler=sampler,
|
50 |
+
)
|
51 |
+
|
52 |
+
name = f"device_{device}_{sampler}"
|
53 |
+
|
54 |
+
assert_equal(
|
55 |
+
model,
|
56 |
+
cfg,
|
57 |
+
f"runway_sd_{name}.png",
|
58 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
59 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
64 |
+
@pytest.mark.parametrize("sampler", [SDSampler.lcm])
|
65 |
+
def test_runway_sd_lcm_lora(device, sampler):
|
66 |
+
check_device(device)
|
67 |
+
|
68 |
+
sd_steps = 5
|
69 |
+
model = ModelManager(
|
70 |
+
name="runwayml/stable-diffusion-inpainting",
|
71 |
+
device=torch.device(device),
|
72 |
+
disable_nsfw=True,
|
73 |
+
sd_cpu_textencoder=False,
|
74 |
+
)
|
75 |
+
cfg = get_config(
|
76 |
+
strategy=HDStrategy.ORIGINAL,
|
77 |
+
prompt="face of a fox, sitting on a bench",
|
78 |
+
sd_steps=sd_steps,
|
79 |
+
sd_guidance_scale=2,
|
80 |
+
sd_lcm_lora=True,
|
81 |
+
)
|
82 |
+
cfg.sd_sampler = sampler
|
83 |
+
|
84 |
+
assert_equal(
|
85 |
+
model,
|
86 |
+
cfg,
|
87 |
+
f"runway_sd_1_5_lcm_lora_device_{device}.png",
|
88 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
89 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
94 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
95 |
+
def test_runway_sd_freeu(device, sampler):
|
96 |
+
sd_steps = check_device(device)
|
97 |
+
model = ModelManager(
|
98 |
+
name="runwayml/stable-diffusion-inpainting",
|
99 |
+
device=torch.device(device),
|
100 |
+
disable_nsfw=True,
|
101 |
+
sd_cpu_textencoder=False,
|
102 |
+
)
|
103 |
+
cfg = get_config(
|
104 |
+
strategy=HDStrategy.ORIGINAL,
|
105 |
+
prompt="face of a fox, sitting on a bench",
|
106 |
+
sd_steps=sd_steps,
|
107 |
+
sd_guidance_scale=7.5,
|
108 |
+
sd_freeu=True,
|
109 |
+
sd_freeu_config=FREEUConfig(),
|
110 |
+
)
|
111 |
+
cfg.sd_sampler = sampler
|
112 |
+
|
113 |
+
assert_equal(
|
114 |
+
model,
|
115 |
+
cfg,
|
116 |
+
f"runway_sd_1_5_freeu_device_{device}.png",
|
117 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
118 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
119 |
+
)
|
120 |
+
|
121 |
+
|
122 |
+
@pytest.mark.parametrize("device", ["cuda", "mps"])
|
123 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
124 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
125 |
+
def test_runway_sd_sd_strength(device, strategy, sampler):
|
126 |
+
sd_steps = check_device(device)
|
127 |
+
model = ModelManager(
|
128 |
+
name="runwayml/stable-diffusion-inpainting",
|
129 |
+
device=torch.device(device),
|
130 |
+
disable_nsfw=True,
|
131 |
+
sd_cpu_textencoder=False,
|
132 |
+
)
|
133 |
+
cfg = get_config(
|
134 |
+
strategy=strategy,
|
135 |
+
prompt="a fox sitting on a bench",
|
136 |
+
sd_steps=sd_steps,
|
137 |
+
sd_strength=0.8,
|
138 |
+
)
|
139 |
+
cfg.sd_sampler = sampler
|
140 |
+
|
141 |
+
assert_equal(
|
142 |
+
model,
|
143 |
+
cfg,
|
144 |
+
f"runway_sd_strength_0.8_device_{device}.png",
|
145 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
146 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
151 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
152 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
153 |
+
def test_runway_sd_cpu_textencoder(device, strategy, sampler):
|
154 |
+
sd_steps = check_device(device)
|
155 |
+
model = ModelManager(
|
156 |
+
name="runwayml/stable-diffusion-inpainting",
|
157 |
+
device=torch.device(device),
|
158 |
+
disable_nsfw=True,
|
159 |
+
sd_cpu_textencoder=True,
|
160 |
+
)
|
161 |
+
cfg = get_config(
|
162 |
+
strategy=strategy,
|
163 |
+
prompt="a fox sitting on a bench",
|
164 |
+
sd_steps=sd_steps,
|
165 |
+
sd_sampler=sampler,
|
166 |
+
)
|
167 |
+
|
168 |
+
assert_equal(
|
169 |
+
model,
|
170 |
+
cfg,
|
171 |
+
f"runway_sd_device_{device}_cpu_textencoder.png",
|
172 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
173 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
178 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
179 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
180 |
+
def test_runway_norm_sd_model(device, strategy, sampler):
|
181 |
+
sd_steps = check_device(device)
|
182 |
+
model = ModelManager(
|
183 |
+
name="runwayml/stable-diffusion-v1-5",
|
184 |
+
device=torch.device(device),
|
185 |
+
disable_nsfw=True,
|
186 |
+
sd_cpu_textencoder=False,
|
187 |
+
)
|
188 |
+
cfg = get_config(
|
189 |
+
strategy=strategy, prompt="face of a fox, sitting on a bench", sd_steps=sd_steps
|
190 |
+
)
|
191 |
+
cfg.sd_sampler = sampler
|
192 |
+
|
193 |
+
assert_equal(
|
194 |
+
model,
|
195 |
+
cfg,
|
196 |
+
f"runway_{device}_norm_sd_model_device_{device}.png",
|
197 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
198 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
@pytest.mark.parametrize("device", ["cuda"])
|
203 |
+
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
204 |
+
@pytest.mark.parametrize("sampler", [SDSampler.dpm_plus_plus_2m])
|
205 |
+
def test_runway_sd_1_5_cpu_offload(device, strategy, sampler):
|
206 |
+
sd_steps = check_device(device)
|
207 |
+
model = ModelManager(
|
208 |
+
name="runwayml/stable-diffusion-inpainting",
|
209 |
+
device=torch.device(device),
|
210 |
+
disable_nsfw=True,
|
211 |
+
sd_cpu_textencoder=False,
|
212 |
+
cpu_offload=True,
|
213 |
+
)
|
214 |
+
cfg = get_config(
|
215 |
+
strategy=strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps
|
216 |
+
)
|
217 |
+
cfg.sd_sampler = sampler
|
218 |
+
|
219 |
+
name = f"device_{device}_{sampler}"
|
220 |
+
|
221 |
+
assert_equal(
|
222 |
+
model,
|
223 |
+
cfg,
|
224 |
+
f"runway_sd_{strategy.capitalize()}_{name}_cpu_offload.png",
|
225 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
226 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
231 |
+
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
232 |
+
@pytest.mark.parametrize(
|
233 |
+
"name",
|
234 |
+
[
|
235 |
+
"sd-v1-5-inpainting.safetensors",
|
236 |
+
"v1-5-pruned-emaonly.safetensors",
|
237 |
+
"sd_xl_base_1.0.safetensors",
|
238 |
+
"sd_xl_base_1.0_inpainting_0.1.safetensors",
|
239 |
+
],
|
240 |
+
)
|
241 |
+
def test_local_file_path(device, sampler, name):
|
242 |
+
sd_steps = check_device(device)
|
243 |
+
model = ModelManager(
|
244 |
+
name=name,
|
245 |
+
device=torch.device(device),
|
246 |
+
disable_nsfw=True,
|
247 |
+
sd_cpu_textencoder=False,
|
248 |
+
cpu_offload=False,
|
249 |
+
)
|
250 |
+
cfg = get_config(
|
251 |
+
strategy=HDStrategy.ORIGINAL,
|
252 |
+
prompt="a fox sitting on a bench",
|
253 |
+
sd_steps=sd_steps,
|
254 |
+
)
|
255 |
+
cfg.sd_sampler = sampler
|
256 |
+
|
257 |
+
name = f"device_{device}_{sampler}_{name}"
|
258 |
+
|
259 |
+
is_sdxl = "sd_xl" in name
|
260 |
+
|
261 |
+
assert_equal(
|
262 |
+
model,
|
263 |
+
cfg,
|
264 |
+
f"sd_local_model_{name}.png",
|
265 |
+
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
266 |
+
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
267 |
+
fx=1.5 if is_sdxl else 1,
|
268 |
+
fy=1.5 if is_sdxl else 1,
|
269 |
+
)
|