File size: 10,177 Bytes
7c24f26
 
 
 
 
 
 
 
 
 
b771342
7c24f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4962fb8
7c24f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e870e
7c24f26
 
 
 
 
 
4962fb8
7c24f26
 
94594e2
 
 
 
7c24f26
 
 
 
 
32f79e5
7c24f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fef05
7c24f26
 
 
 
90c3067
1998481
7c24f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import streamlit as st
import json
from typing import Iterable
from moa.agent import MOAgent
from moa.agent.moa import ResponseChunk
from streamlit_ace import st_ace
import copy

# Default configuration
default_config = {
    "main_model": "llama-3.1-70b-versatile",
    "cycles": 3,
    "layer_agent_config": {}
}

layer_agent_config_def = {
    "layer_agent_1": {
        "system_prompt": "Think through your response step by step. {helper_response}",
        "model_name": "llama3-8b-8192"
    },
    "layer_agent_2": {
        "system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
        "model_name": "gemma-7b-it",
        "temperature": 0.7
    },
    "layer_agent_3": {
        "system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
        "model_name": "llama3-8b-8192"
    },

}

# Recommended Configuration

rec_config = {
    "main_model": "llama-3.2-90b-text-preview",
    "cycles": 2,
    "layer_agent_config": {}
}

layer_agent_config_rec = {
    "layer_agent_1": {
        "system_prompt": "Think through your response step by step. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.1
    },
    "layer_agent_2": {
        "system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.2
    },
    "layer_agent_3": {
        "system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.4
    },
    "layer_agent_4": {
        "system_prompt": "You are an expert planner agent. Create a plan for how to answer the human's query. {helper_response}",
        "model_name": "mixtral-8x7b-32768",
        "temperature": 0.5
    },
}


def stream_response(messages: Iterable[ResponseChunk]):
    layer_outputs = {}
    for message in messages:
        if message['response_type'] == 'intermediate':
            layer = message['metadata']['layer']
            if layer not in layer_outputs:
                layer_outputs[layer] = []
            layer_outputs[layer].append(message['delta'])
        else:
            # Display accumulated layer outputs
            for layer, outputs in layer_outputs.items():
                st.write(f"Layer {layer}")
                cols = st.columns(len(outputs))
                for i, output in enumerate(outputs):
                    with cols[i]:
                        st.expander(label=f"Agent {i+1}", expanded=False).write(output)
            
            # Clear layer outputs for the next iteration
            layer_outputs = {}
            
            # Yield the main agent's output
            yield message['delta']

def set_moa_agent(
    main_model: str = default_config['main_model'],
    cycles: int = default_config['cycles'],
    layer_agent_config: dict[dict[str, any]] = copy.deepcopy(layer_agent_config_def),
    main_model_temperature: float = 0.1,
    override: bool = False
):
    if override or ("main_model" not in st.session_state):
        st.session_state.main_model = main_model
    else:
        if "main_model" not in st.session_state: st.session_state.main_model = main_model 

    if override or ("cycles" not in st.session_state):
        st.session_state.cycles = cycles
    else:
        if "cycles" not in st.session_state: st.session_state.cycles = cycles

    if override or ("layer_agent_config" not in st.session_state):
        st.session_state.layer_agent_config = layer_agent_config
    else:
        if "layer_agent_config" not in st.session_state: st.session_state.layer_agent_config = layer_agent_config

    if override or ("main_temp" not in st.session_state):
        st.session_state.main_temp = main_model_temperature
    else:
        if "main_temp" not in st.session_state: st.session_state.main_temp = main_model_temperature

    cls_ly_conf = copy.deepcopy(st.session_state.layer_agent_config)
    
    if override or ("moa_agent" not in st.session_state):
        st.session_state.moa_agent = MOAgent.from_config(
            main_model=st.session_state.main_model,
            cycles=st.session_state.cycles,
            layer_agent_config=cls_ly_conf,
            temperature=st.session_state.main_temp
        )

    del cls_ly_conf
    del layer_agent_config

st.set_page_config(
    page_title="Mixture-Of-Agents Powered by Groq",
    page_icon='/app/static/favicon.ico',
        menu_items={
        'About': "## Groq Mixture-Of-Agents \n Powered by [Groq](https://groq.com)"
    },
    layout="wide"
)
valid_model_names = [
    'llama-3.2-90b-text-preview',
    'llama3-70b-8192',
    'llama3-8b-8192',
    'llama-3.1-70b-versatile',
    'llama-3.1-8b-instant',
    'llama3-groq-70b-8192-tool-use-preview',
    'llama3-groq-8b-8192-tool-use-preview',
    'gemma-7b-it',
    'gemma2-9b-it',
    'mixtral-8x7b-32768'
]

st.image("./static/banner.png", width=500)
st.write("---")



# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []

set_moa_agent()

# Sidebar for configuration
with st.sidebar:
    # config_form = st.form("Agent Configuration", border=False)
    st.title("MOA Configuration")
    with st.form("Agent Configuration", border=False):
        if st.form_submit_button("Use Recommended Config"):
            try:
                set_moa_agent(
                    main_model=rec_config['main_model'],
                    cycles=rec_config['cycles'],
                    layer_agent_config=layer_agent_config_rec,
                    override=True
                )
                st.session_state.messages = []
                st.success("Configuration updated successfully!")
            except json.JSONDecodeError:
                st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
            except Exception as e:
                st.error(f"Error updating configuration: {str(e)}")
        # Main model selection
        new_main_model = st.selectbox(
            "Select Main Model",
            options=valid_model_names,
            index=valid_model_names.index(st.session_state.main_model)
        )

        # Cycles input
        new_cycles = st.number_input(
            "Number of Layers",
            min_value=1,
            max_value=10,
            value=st.session_state.cycles
        )

        # Main Model Temperature
        main_temperature = st.number_input(
            label="Main Model Temperature",
            value=0.1,
            min_value=0.0,
            max_value=1.0,
            step=0.1
        )

        # Layer agent configuration
        tooltip = "Agents in the layer agent configuration run in parallel _per cycle_. Each layer agent supports all initialization parameters of [Langchain's ChatGroq](https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html) class as valid dictionary fields."
        st.markdown("Layer Agent Config", help=tooltip)
        new_layer_agent_config = st_ace(
            value=json.dumps(st.session_state.layer_agent_config, indent=2),
            language='json',
            placeholder="Layer Agent Configuration (JSON)",
            show_gutter=False,
            wrap=True,
            auto_update=True
        )

        if st.form_submit_button("Update Configuration"):
            try:
                new_layer_config = json.loads(new_layer_agent_config)
                set_moa_agent(
                    main_model=new_main_model,
                    cycles=new_cycles,
                    layer_agent_config=new_layer_config,
                    main_model_temperature=main_temperature,
                    override=True
                )
                st.session_state.messages = []
                st.success("Configuration updated successfully!")
            except json.JSONDecodeError:
                st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
            except Exception as e:
                st.error(f"Error updating configuration: {str(e)}")

    st.markdown("---")
    st.markdown("""
    ### Credits
    - MOA: [Together AI](https://www.together.ai/blog/together-moa)
    - LLMs: [Groq](https://groq.com/)
    - Paper: [arXiv:2406.04692](https://arxiv.org/abs/2406.04692)
    - GitHub repo: [skapadia3214/groq-moa](https://github.com/skapadia3214/groq-moa)
    """)

# Main app layout
st.header("Mixture of Agents", anchor=False)
st.write("A demo of the Mixture of Agents architecture proposed by [Together AI](https://www.together.ai/blog/together-moa), Powered by [Groq](https://groq.com/) LLMs.")
# st.image("/app/static/moa_groq.svg", caption="Mixture of Agents Workflow", width=1000)

# Display current configuration
with st.expander("Current MOA Configuration", expanded=False):
    st.markdown(f"**Main Model**: ``{st.session_state.main_model}``")
    st.markdown(f"**Main Model Temperature**: ``{st.session_state.main_temp:.1f}``")
    st.markdown(f"**Layers**: ``{st.session_state.cycles}``")
    st.markdown(f"**Layer Agents Config**:")
    new_layer_agent_config = st_ace(
        value=json.dumps(st.session_state.layer_agent_config, indent=2),
        language='json',
        placeholder="Layer Agent Configuration (JSON)",
        show_gutter=False,
        wrap=True,
        readonly=True,
        auto_update=True
    )

# Chat interface
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if query := st.chat_input("Ask a question"):
    st.session_state.messages.append({"role": "user", "content": query})
    with st.chat_message("user"):
        st.write(query)

    moa_agent: MOAgent = st.session_state.moa_agent
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        ast_mess = stream_response(moa_agent.chat(query, output_format='json'))
        response = st.write_stream(ast_mess)
    
    st.session_state.messages.append({"role": "assistant", "content": response})