groq-moa / moa /agent /moa.py
dromerosm's picture
Upload 11 files
7c24f26 verified
raw
history blame
6.36 kB
"""
Langchain agent
"""
from typing import Generator, Dict, Optional, Literal, TypedDict, List
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableSerializable
from langchain_core.output_parsers import StrOutputParser
from .prompts import SYSTEM_PROMPT, REFERENCE_SYSTEM_PROMPT
load_dotenv()
valid_model_names = Literal[
'llama3-70b-8192',
'llama3-8b-8192',
'gemma-7b-it',
'gemma2-9b-it',
'mixtral-8x7b-32768'
]
class ResponseChunk(TypedDict):
delta: str
response_type: Literal['intermediate', 'output']
metadata: Dict = {}
class MOAgent:
def __init__(
self,
main_agent: RunnableSerializable[Dict, str],
layer_agent: RunnableSerializable[Dict, Dict],
reference_system_prompt: Optional[str] = None,
cycles: Optional[int] = None,
chat_memory: Optional[ConversationBufferMemory] = None
) -> None:
self.reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
self.main_agent = main_agent
self.layer_agent = layer_agent
self.cycles = cycles or 1
self.chat_memory = chat_memory or ConversationBufferMemory(
memory_key="messages",
return_messages=True
)
@staticmethod
def concat_response(
inputs: Dict[str, str],
reference_system_prompt: Optional[str] = None
):
reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
responses = ""
res_list = []
for i, out in enumerate(inputs.values()):
responses += f"{i}. {out}\n"
res_list.append(out)
formatted_prompt = reference_system_prompt.format(responses=responses)
return {
'formatted_response': formatted_prompt,
'responses': res_list
}
@classmethod
def from_config(
cls,
main_model: Optional[valid_model_names] = 'llama3-70b-8192',
system_prompt: Optional[str] = None,
cycles: int = 1,
layer_agent_config: Optional[Dict] = None,
reference_system_prompt: Optional[str] = None,
**main_model_kwargs
):
reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
system_prompt = system_prompt or SYSTEM_PROMPT
layer_agent = MOAgent._configure_layer_agent(layer_agent_config)
main_agent = MOAgent._create_agent_from_system_prompt(
system_prompt=system_prompt,
model_name=main_model,
**main_model_kwargs
)
return cls(
main_agent=main_agent,
layer_agent=layer_agent,
reference_system_prompt=reference_system_prompt,
cycles=cycles
)
@staticmethod
def _configure_layer_agent(
layer_agent_config: Optional[Dict] = None
) -> RunnableSerializable[Dict, Dict]:
if not layer_agent_config:
layer_agent_config = {
'layer_agent_1' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'llama3-8b-8192'},
'layer_agent_2' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'gemma-7b-it'},
'layer_agent_3' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'mixtral-8x7b-32768'}
}
parallel_chain_map = dict()
for key, value in layer_agent_config.items():
chain = MOAgent._create_agent_from_system_prompt(
system_prompt=value.pop("system_prompt", SYSTEM_PROMPT),
model_name=value.pop("model_name", 'llama3-8b-8192'),
**value
)
parallel_chain_map[key] = RunnablePassthrough() | chain
chain = parallel_chain_map | RunnableLambda(MOAgent.concat_response)
return chain
@staticmethod
def _create_agent_from_system_prompt(
system_prompt: str = SYSTEM_PROMPT,
model_name: str = "llama3-8b-8192",
**llm_kwargs
) -> RunnableSerializable[Dict, str]:
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="messages", optional=True),
("human", "{input}")
])
assert 'helper_response' in prompt.input_variables
llm = ChatGroq(model=model_name, **llm_kwargs)
chain = prompt | llm | StrOutputParser()
return chain
def chat(
self,
input: str,
messages: Optional[List[BaseMessage]] = None,
cycles: Optional[int] = None,
save: bool = True,
output_format: Literal['string', 'json'] = 'string'
) -> Generator[str | ResponseChunk, None, None]:
cycles = cycles or self.cycles
llm_inp = {
'input': input,
'messages': messages or self.chat_memory.load_memory_variables({})['messages'],
'helper_response': ""
}
for cyc in range(cycles):
layer_output = self.layer_agent.invoke(llm_inp)
l_frm_resp = layer_output['formatted_response']
l_resps = layer_output['responses']
llm_inp = {
'input': input,
'messages': self.chat_memory.load_memory_variables({})['messages'],
'helper_response': l_frm_resp
}
if output_format == 'json':
for l_out in l_resps:
yield ResponseChunk(
delta=l_out,
response_type='intermediate',
metadata={'layer': cyc + 1}
)
stream = self.main_agent.stream(llm_inp)
response = ""
for chunk in stream:
if output_format == 'json':
yield ResponseChunk(
delta=chunk,
response_type='output',
metadata={}
)
else:
yield chunk
response += chunk
if save:
self.chat_memory.save_context({'input': input}, {'output': response})