File size: 29,013 Bytes
6d08643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
"""

    Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py

"""


from typing import Dict, Union

import torch
from omegaconf import ListConfig, OmegaConf
from tqdm import tqdm

from ...modules.diffusionmodules.sampling_utils import (
    get_ancestral_step,
    linear_multistep_coeff,
    to_d,
    to_neg_log_sigma,
    to_sigma,
)
from ...util import append_dims, default, instantiate_from_config
from k_diffusion.sampling import get_sigmas_karras, BrownianTreeNoiseSampler

DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"}


class BaseDiffusionSampler:
    def __init__(

        self,

        discretization_config: Union[Dict, ListConfig, OmegaConf],

        num_steps: Union[int, None] = None,

        guider_config: Union[Dict, ListConfig, OmegaConf, None] = None,

        verbose: bool = False,

        device: str = "cuda",

    ):
        self.num_steps = num_steps
        self.discretization = instantiate_from_config(discretization_config)
        self.guider = instantiate_from_config(
            default(
                guider_config,
                DEFAULT_GUIDER,
            )
        )
        self.verbose = verbose
        self.device = device

    def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
        sigmas = self.discretization(
            self.num_steps if num_steps is None else num_steps, device=self.device
        )
        uc = default(uc, cond)

        x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
        num_sigmas = len(sigmas)

        s_in = x.new_ones([x.shape[0]])

        return x, s_in, sigmas, num_sigmas, cond, uc

    def denoise(self, x, denoiser, sigma, cond, uc):
        denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc))
        denoised = self.guider(denoised, sigma)
        return denoised

    def get_sigma_gen(self, num_sigmas):
        sigma_generator = range(num_sigmas - 1)
        if self.verbose:
            print("#" * 30, " Sampling setting ", "#" * 30)
            print(f"Sampler: {self.__class__.__name__}")
            print(f"Discretization: {self.discretization.__class__.__name__}")
            print(f"Guider: {self.guider.__class__.__name__}")
            sigma_generator = tqdm(
                sigma_generator,
                total=num_sigmas,
                desc=f"Sampling with {self.__class__.__name__} for {num_sigmas} steps",
            )
        return sigma_generator


class SingleStepDiffusionSampler(BaseDiffusionSampler):
    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs):
        raise NotImplementedError

    def euler_step(self, x, d, dt):
        return x + dt * d


class EDMSampler(SingleStepDiffusionSampler):
    def __init__(

        self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs

    ):
        super().__init__(*args, **kwargs)

        self.s_churn = s_churn
        self.s_tmin = s_tmin
        self.s_tmax = s_tmax
        self.s_noise = s_noise

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0):
        sigma_hat = sigma * (gamma + 1.0)
        if gamma > 0:
            eps = torch.randn_like(x) * self.s_noise
            x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5

        denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
        # print('denoised', denoised.mean(axis=[0, 2, 3]))
        d = to_d(x, sigma_hat, denoised)
        dt = append_dims(next_sigma - sigma_hat, x.ndim)

        euler_step = self.euler_step(x, d, dt)
        x = self.possible_correction_step(
            euler_step, x, d, dt, next_sigma, denoiser, cond, uc
        )
        return x

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        for i in self.get_sigma_gen(num_sigmas):
            gamma = (
                min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
                if self.s_tmin <= sigmas[i] <= self.s_tmax
                else 0.0
            )
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
                gamma,
            )

        return x


class AncestralSampler(SingleStepDiffusionSampler):
    def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.eta = eta
        self.s_noise = s_noise
        self.noise_sampler = lambda x: torch.randn_like(x)

    def ancestral_euler_step(self, x, denoised, sigma, sigma_down):
        d = to_d(x, sigma, denoised)
        dt = append_dims(sigma_down - sigma, x.ndim)

        return self.euler_step(x, d, dt)

    def ancestral_step(self, x, sigma, next_sigma, sigma_up):
        x = torch.where(
            append_dims(next_sigma, x.ndim) > 0.0,
            x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim),
            x,
        )
        return x

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        for i in self.get_sigma_gen(num_sigmas):
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
            )

        return x


class LinearMultistepSampler(BaseDiffusionSampler):
    def __init__(

        self,

        order=4,

        *args,

        **kwargs,

    ):
        super().__init__(*args, **kwargs)

        self.order = order

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        ds = []
        sigmas_cpu = sigmas.detach().cpu().numpy()
        for i in self.get_sigma_gen(num_sigmas):
            sigma = s_in * sigmas[i]
            denoised = denoiser(
                *self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs
            )
            denoised = self.guider(denoised, sigma)
            d = to_d(x, sigma, denoised)
            ds.append(d)
            if len(ds) > self.order:
                ds.pop(0)
            cur_order = min(i + 1, self.order)
            coeffs = [
                linear_multistep_coeff(cur_order, sigmas_cpu, i, j)
                for j in range(cur_order)
            ]
            x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))

        return x


class EulerEDMSampler(EDMSampler):
    def possible_correction_step(

        self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc

    ):
        # print("euler_step: ", euler_step.mean(axis=[0, 2, 3]))
        return euler_step


class HeunEDMSampler(EDMSampler):
    def possible_correction_step(

        self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc

    ):
        if torch.sum(next_sigma) < 1e-14:
            # Save a network evaluation if all noise levels are 0
            return euler_step
        else:
            denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc)
            d_new = to_d(euler_step, next_sigma, denoised)
            d_prime = (d + d_new) / 2.0

            # apply correction if noise level is not 0
            x = torch.where(
                append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step
            )
            return x


class EulerAncestralSampler(AncestralSampler):
    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc):
        sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
        denoised = self.denoise(x, denoiser, sigma, cond, uc)
        x = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
        x = self.ancestral_step(x, sigma, next_sigma, sigma_up)

        return x


class DPMPP2SAncestralSampler(AncestralSampler):
    def get_variables(self, sigma, sigma_down):
        t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)]
        h = t_next - t
        s = t + 0.5 * h
        return h, s, t, t_next

    def get_mult(self, h, s, t, t_next):
        mult1 = to_sigma(s) / to_sigma(t)
        mult2 = (-0.5 * h).expm1()
        mult3 = to_sigma(t_next) / to_sigma(t)
        mult4 = (-h).expm1()

        return mult1, mult2, mult3, mult4

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs):
        sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
        denoised = self.denoise(x, denoiser, sigma, cond, uc)
        x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down)

        if torch.sum(sigma_down) < 1e-14:
            # Save a network evaluation if all noise levels are 0
            x = x_euler
        else:
            h, s, t, t_next = self.get_variables(sigma, sigma_down)
            mult = [
                append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next)
            ]

            x2 = mult[0] * x - mult[1] * denoised
            denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc)
            x_dpmpp2s = mult[2] * x - mult[3] * denoised2

            # apply correction if noise level is not 0
            x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler)

        x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
        return x


class DPMPP2MSampler(BaseDiffusionSampler):
    def get_variables(self, sigma, next_sigma, previous_sigma=None):
        t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)]
        h = t_next - t

        if previous_sigma is not None:
            h_last = t - to_neg_log_sigma(previous_sigma)
            r = h_last / h
            return h, r, t, t_next
        else:
            return h, None, t, t_next

    def get_mult(self, h, r, t, t_next, previous_sigma):
        mult1 = to_sigma(t_next) / to_sigma(t)
        mult2 = (-h).expm1()

        if previous_sigma is not None:
            mult3 = 1 + 1 / (2 * r)
            mult4 = 1 / (2 * r)
            return mult1, mult2, mult3, mult4
        else:
            return mult1, mult2

    def sampler_step(

        self,

        old_denoised,

        previous_sigma,

        sigma,

        next_sigma,

        denoiser,

        x,

        cond,

        uc=None,

    ):
        denoised = self.denoise(x, denoiser, sigma, cond, uc)

        h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
        mult = [
            append_dims(mult, x.ndim)
            for mult in self.get_mult(h, r, t, t_next, previous_sigma)
        ]

        x_standard = mult[0] * x - mult[1] * denoised
        if old_denoised is None or torch.sum(next_sigma) < 1e-14:
            # Save a network evaluation if all noise levels are 0 or on the first step
            return x_standard, denoised
        else:
            denoised_d = mult[2] * denoised - mult[3] * old_denoised
            x_advanced = mult[0] * x - mult[1] * denoised_d

            # apply correction if noise level is not 0 and not first step
            x = torch.where(
                append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard
            )

        return x, denoised

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        old_denoised = None
        for i in self.get_sigma_gen(num_sigmas):
            x, old_denoised = self.sampler_step(
                old_denoised,
                None if i == 0 else s_in * sigmas[i - 1],
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc=uc,
            )

        return x


class SubstepSampler(EulerAncestralSampler):
    def __init__(self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, restore_cfg=4.0,

            restore_cfg_s_tmin=0.05, eta=1., n_sample_steps=4, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.n_sample_steps = n_sample_steps
        self.steps_subset = [0, 100, 200, 300, 1000]

    def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
        sigmas = self.discretization(1000, device=self.device)
        sigmas = sigmas[
            self.steps_subset[: self.num_steps] + self.steps_subset[-1:]
        ]
        print(sigmas)
        # uc = cond
        x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
        num_sigmas = len(sigmas)
        s_in = x.new_ones([x.shape[0]])
        return x, s_in, sigmas, num_sigmas, cond, uc

    def denoise(self, x, denoiser, sigma, cond, uc, control_scale=1.0):
        denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc), control_scale)
        denoised = self.guider(denoised, sigma)
        return denoised

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, control_scale=1.0, *args, **kwargs):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        for i in self.get_sigma_gen(num_sigmas):
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
                control_scale=control_scale,
            )

        return x

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, control_scale=1.0):
        sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
        denoised = self.denoise(x, denoiser, sigma, cond, uc, control_scale=control_scale)
        x = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
        x = self.ancestral_step(x, sigma, next_sigma, sigma_up)

        return x


class RestoreDPMPP2MSampler(DPMPP2MSampler):
    def __init__(self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, restore_cfg=4.0,

            restore_cfg_s_tmin=0.05, eta=1., *args, **kwargs):
        self.s_noise = s_noise
        self.eta = eta
        super().__init__(*args, **kwargs)

    def denoise(self, x, denoiser, sigma, cond, uc, control_scale=1.0):
        denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc), control_scale)
        denoised = self.guider(denoised, sigma)
        return denoised

    def get_mult(self, h, r, t, t_next, previous_sigma):
        eta_h = self.eta * h
        mult1 = to_sigma(t_next) / to_sigma(t) * (-eta_h).exp()
        mult2 = (-h -eta_h).expm1()

        if previous_sigma is not None:
            mult3 = 1 + 1 / (2 * r)
            mult4 = 1 / (2 * r)
            return mult1, mult2, mult3, mult4
        else:
            return mult1, mult2


    def sampler_step(

        self,

        old_denoised,

        previous_sigma,

        sigma,

        next_sigma,

        denoiser,

        x,

        cond,

        uc=None,

        eps_noise=None,

        control_scale=1.0,

    ):
        denoised = self.denoise(x, denoiser, sigma, cond, uc, control_scale=control_scale)

        h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
        eta_h = self.eta * h
        mult = [
            append_dims(mult, x.ndim)
            for mult in self.get_mult(h, r, t, t_next, previous_sigma)
        ]

        x_standard = mult[0] * x - mult[1] * denoised
        if old_denoised is None or torch.sum(next_sigma) < 1e-14:
            # Save a network evaluation if all noise levels are 0 or on the first step
            return x_standard, denoised
        else:
            denoised_d = mult[2] * denoised - mult[3] * old_denoised
            x_advanced = mult[0] * x - mult[1] * denoised_d

            # apply correction if noise level is not 0 and not first step
            x = torch.where(
                append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard
            )
            if self.eta:
                x = x + eps_noise * next_sigma * (-2 * eta_h).expm1().neg().sqrt() * self.s_noise

        return x, denoised

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, control_scale=1.0, **kwargs):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )
        sigmas_min, sigmas_max = sigmas[-2].cpu(), sigmas[0].cpu()
        sigmas_new = get_sigmas_karras(self.num_steps, sigmas_min, sigmas_max, device=x.device)
        sigmas = sigmas_new

        noise_sampler = BrownianTreeNoiseSampler(x, sigmas_min, sigmas_max)

        old_denoised = None
        for i in self.get_sigma_gen(num_sigmas):
            if i > 0 and torch.sum(s_in * sigmas[i + 1]) > 1e-14:
                eps_noise = noise_sampler(s_in * sigmas[i], s_in * sigmas[i + 1])
            else:
                eps_noise = None
            x, old_denoised = self.sampler_step(
                old_denoised,
                None if i == 0 else s_in * sigmas[i - 1],
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc=uc,
                eps_noise=eps_noise,
                control_scale=control_scale,
            )

        return x


def to_d_center(denoised, x_center, x):
    b = denoised.shape[0]
    v_center = (denoised - x_center).view(b, -1)
    v_denoise = (x - denoised).view(b, -1)
    d_center = v_center - v_denoise * (v_center * v_denoise).sum(dim=1).view(b, 1) / \
                (v_denoise * v_denoise).sum(dim=1).view(b, 1)
    d_center = d_center / d_center.view(x.shape[0], -1).norm(dim=1).view(-1, 1)
    return d_center.view(denoised.shape)


class RestoreEDMSampler(SingleStepDiffusionSampler):
    def __init__(

        self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, restore_cfg=4.0,

            restore_cfg_s_tmin=0.05, *args, **kwargs

    ):
        super().__init__(*args, **kwargs)

        self.s_churn = s_churn
        self.s_tmin = s_tmin
        self.s_tmax = s_tmax
        self.s_noise = s_noise
        self.restore_cfg = restore_cfg
        self.restore_cfg_s_tmin = restore_cfg_s_tmin
        self.sigma_max = 14.6146

    def denoise(self, x, denoiser, sigma, cond, uc, control_scale=1.0):
        denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc), control_scale)
        denoised = self.guider(denoised, sigma)
        return denoised

    def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0, x_center=None, eps_noise=None,

                     control_scale=1.0, use_linear_control_scale=False, control_scale_start=0.0):
        sigma_hat = sigma * (gamma + 1.0)
        if gamma > 0:
            if eps_noise is not None:
                eps = eps_noise * self.s_noise
            else:
                eps = torch.randn_like(x) * self.s_noise
            x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5

        if use_linear_control_scale:
            control_scale = (sigma[0].item() / self.sigma_max) * (control_scale_start - control_scale) + control_scale

        denoised = self.denoise(x, denoiser, sigma_hat, cond, uc, control_scale=control_scale)

        if (next_sigma[0] > self.restore_cfg_s_tmin) and (self.restore_cfg > 0):
            d_center = (denoised - x_center)
            denoised = denoised - d_center * ((sigma.view(-1, 1, 1, 1) / self.sigma_max) ** self.restore_cfg)

        d = to_d(x, sigma_hat, denoised)
        dt = append_dims(next_sigma - sigma_hat, x.ndim)
        x = self.euler_step(x, d, dt)
        return x

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, x_center=None, control_scale=1.0,

                 use_linear_control_scale=False, control_scale_start=0.0):
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        for _idx, i in enumerate(self.get_sigma_gen(num_sigmas)):
            gamma = (
                min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
                if self.s_tmin <= sigmas[i] <= self.s_tmax
                else 0.0
            )
            x = self.sampler_step(
                s_in * sigmas[i],
                s_in * sigmas[i + 1],
                denoiser,
                x,
                cond,
                uc,
                gamma,
                x_center,
                control_scale=control_scale,
                use_linear_control_scale=use_linear_control_scale,
                control_scale_start=control_scale_start,
            )
        return x


class TiledRestoreEDMSampler(RestoreEDMSampler):
    def __init__(self, tile_size=128, tile_stride=64, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.tile_size = tile_size
        self.tile_stride = tile_stride
        self.tile_weights = gaussian_weights(self.tile_size, self.tile_size, 1)

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, x_center=None, control_scale=1.0,

                 use_linear_control_scale=False, control_scale_start=0.0):
        use_local_prompt = isinstance(cond, list)
        b, _, h, w = x.shape
        latent_tiles_iterator = _sliding_windows(h, w, self.tile_size, self.tile_stride)
        tile_weights = self.tile_weights.repeat(b, 1, 1, 1)
        if not use_local_prompt:
            LQ_latent = cond['control']
        else:
            assert len(cond) == len(latent_tiles_iterator), "Number of local prompts should be equal to number of tiles"
            LQ_latent = cond[0]['control']
        clean_LQ_latent = x_center
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )

        for _idx, i in enumerate(self.get_sigma_gen(num_sigmas)):
            gamma = (
                min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
                if self.s_tmin <= sigmas[i] <= self.s_tmax
                else 0.0
            )
            x_next = torch.zeros_like(x)
            count = torch.zeros_like(x)
            eps_noise = torch.randn_like(x)
            for j, (hi, hi_end, wi, wi_end) in enumerate(latent_tiles_iterator):
                x_tile = x[:, :, hi:hi_end, wi:wi_end]
                _eps_noise = eps_noise[:, :, hi:hi_end, wi:wi_end]
                x_center_tile = clean_LQ_latent[:, :, hi:hi_end, wi:wi_end]
                if use_local_prompt:
                    _cond = cond[j]
                else:
                    _cond = cond
                _cond['control'] = LQ_latent[:, :, hi:hi_end, wi:wi_end]
                uc['control'] = LQ_latent[:, :, hi:hi_end, wi:wi_end]
                _x = self.sampler_step(
                    s_in * sigmas[i],
                    s_in * sigmas[i + 1],
                    denoiser,
                    x_tile,
                    _cond,
                    uc,
                    gamma,
                    x_center_tile,
                    eps_noise=_eps_noise,
                    control_scale=control_scale,
                    use_linear_control_scale=use_linear_control_scale,
                    control_scale_start=control_scale_start,
                )
                x_next[:, :, hi:hi_end, wi:wi_end] += _x * tile_weights
                count[:, :, hi:hi_end, wi:wi_end] += tile_weights
            x_next /= count
            x = x_next
        return x


class TiledRestoreDPMPP2MSampler(RestoreDPMPP2MSampler):
    def __init__(self, tile_size=128, tile_stride=64, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.tile_size = tile_size
        self.tile_stride = tile_stride
        self.tile_weights = gaussian_weights(self.tile_size, self.tile_size, 1)

    def __call__(self, denoiser, x, cond, uc=None, num_steps=None, control_scale=1.0, **kwargs):
        use_local_prompt = isinstance(cond, list)
        b, _, h, w = x.shape
        latent_tiles_iterator = _sliding_windows(h, w, self.tile_size, self.tile_stride)
        tile_weights = self.tile_weights.repeat(b, 1, 1, 1)
        if not use_local_prompt:
            LQ_latent = cond['control']
        else:
            assert len(cond) == len(latent_tiles_iterator), "Number of local prompts should be equal to number of tiles"
            LQ_latent = cond[0]['control']
        x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
            x, cond, uc, num_steps
        )
        sigmas_min, sigmas_max = sigmas[-2].cpu(), sigmas[0].cpu()
        sigmas_new = get_sigmas_karras(self.num_steps, sigmas_min, sigmas_max, device=x.device)
        sigmas = sigmas_new

        noise_sampler = BrownianTreeNoiseSampler(x, sigmas_min, sigmas_max)

        old_denoised = None
        for _idx, i in enumerate(self.get_sigma_gen(num_sigmas)):
            if i > 0 and torch.sum(s_in * sigmas[i + 1]) > 1e-14:
                eps_noise = noise_sampler(s_in * sigmas[i], s_in * sigmas[i + 1])
            else:
                eps_noise = torch.zeros_like(x)
            x_next = torch.zeros_like(x)
            old_denoised_next = torch.zeros_like(x)
            count = torch.zeros_like(x)
            for j, (hi, hi_end, wi, wi_end) in enumerate(latent_tiles_iterator):
                x_tile = x[:, :, hi:hi_end, wi:wi_end]
                _eps_noise = eps_noise[:, :, hi:hi_end, wi:wi_end]
                if old_denoised is not None:
                    old_denoised_tile = old_denoised[:, :, hi:hi_end, wi:wi_end]
                else:
                    old_denoised_tile = None
                if use_local_prompt:
                    _cond = cond[j]
                else:
                    _cond = cond
                _cond['control'] = LQ_latent[:, :, hi:hi_end, wi:wi_end]
                uc['control'] = LQ_latent[:, :, hi:hi_end, wi:wi_end]
                _x, _old_denoised = self.sampler_step(
                    old_denoised_tile,
                    None if i == 0 else s_in * sigmas[i - 1],
                    s_in * sigmas[i],
                    s_in * sigmas[i + 1],
                    denoiser,
                    x_tile,
                    _cond,
                    uc=uc,
                    eps_noise=_eps_noise,
                    control_scale=control_scale,
                )
                x_next[:, :, hi:hi_end, wi:wi_end] += _x * tile_weights
                old_denoised_next[:, :, hi:hi_end, wi:wi_end] += _old_denoised * tile_weights
                count[:, :, hi:hi_end, wi:wi_end] += tile_weights
            old_denoised_next /= count
            x_next /= count
            x = x_next
            old_denoised = old_denoised_next
        return x


def gaussian_weights(tile_width, tile_height, nbatches):
    """Generates a gaussian mask of weights for tile contributions"""
    from numpy import pi, exp, sqrt
    import numpy as np

    latent_width = tile_width
    latent_height = tile_height

    var = 0.01
    midpoint = (latent_width - 1) / 2  # -1 because index goes from 0 to latent_width - 1
    x_probs = [exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var)
               for x in range(latent_width)]
    midpoint = latent_height / 2
    y_probs = [exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var)
               for y in range(latent_height)]

    weights = np.outer(y_probs, x_probs)
    return torch.tile(torch.tensor(weights, device='cuda'), (nbatches, 4, 1, 1))


def _sliding_windows(h: int, w: int, tile_size: int, tile_stride: int):
    hi_list = list(range(0, h - tile_size + 1, tile_stride))
    if (h - tile_size) % tile_stride != 0:
        hi_list.append(h - tile_size)

    wi_list = list(range(0, w - tile_size + 1, tile_stride))
    if (w - tile_size) % tile_stride != 0:
        wi_list.append(w - tile_size)

    coords = []
    for hi in hi_list:
        for wi in wi_list:
            coords.append((hi, hi + tile_size, wi, wi + tile_size))
    return coords