|
import torch.cuda |
|
import argparse |
|
from SUPIR.util import create_SUPIR_model, PIL2Tensor, Tensor2PIL, convert_dtype |
|
from PIL import Image |
|
from llava.llava_agent import LLavaAgent |
|
from CKPT_PTH import LLAVA_MODEL_PATH |
|
import os |
|
from torch.nn.functional import interpolate |
|
|
|
if torch.cuda.device_count() >= 2: |
|
SUPIR_device = 'cuda:0' |
|
LLaVA_device = 'cuda:1' |
|
elif torch.cuda.device_count() == 1: |
|
SUPIR_device = 'cuda:0' |
|
LLaVA_device = 'cuda:0' |
|
else: |
|
raise ValueError('Currently support CUDA only.') |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--img_dir", type=str) |
|
parser.add_argument("--save_dir", type=str) |
|
parser.add_argument("--upscale", type=int, default=1) |
|
parser.add_argument("--SUPIR_sign", type=str, default='Q', choices=['F', 'Q']) |
|
parser.add_argument("--seed", type=int, default=1234) |
|
parser.add_argument("--min_size", type=int, default=1024) |
|
parser.add_argument("--edm_steps", type=int, default=50) |
|
parser.add_argument("--s_stage1", type=int, default=-1) |
|
parser.add_argument("--s_churn", type=int, default=5) |
|
parser.add_argument("--s_noise", type=float, default=1.003) |
|
parser.add_argument("--s_cfg", type=float, default=7.5) |
|
parser.add_argument("--s_stage2", type=float, default=1.) |
|
parser.add_argument("--num_samples", type=int, default=1) |
|
parser.add_argument("--a_prompt", type=str, |
|
default='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R ' |
|
'camera, hyper detailed photo - realistic maximum detail, 32k, Color ' |
|
'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, ' |
|
'hyper sharpness, perfect without deformations.') |
|
parser.add_argument("--n_prompt", type=str, |
|
default='painting, oil painting, illustration, drawing, art, sketch, oil painting, ' |
|
'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, ' |
|
'worst quality, low quality, frames, watermark, signature, jpeg artifacts, ' |
|
'deformed, lowres, over-smooth') |
|
parser.add_argument("--color_fix_type", type=str, default='Wavelet', choices=["None", "AdaIn", "Wavelet"]) |
|
parser.add_argument("--linear_CFG", action='store_true', default=True) |
|
parser.add_argument("--linear_s_stage2", action='store_true', default=False) |
|
parser.add_argument("--spt_linear_CFG", type=float, default=4.0) |
|
parser.add_argument("--spt_linear_s_stage2", type=float, default=0.) |
|
parser.add_argument("--ae_dtype", type=str, default="bf16", choices=['fp32', 'bf16']) |
|
parser.add_argument("--diff_dtype", type=str, default="fp16", choices=['fp32', 'fp16', 'bf16']) |
|
parser.add_argument("--no_llava", action='store_true', default=False) |
|
parser.add_argument("--loading_half_params", action='store_true', default=False) |
|
parser.add_argument("--use_tile_vae", action='store_true', default=False) |
|
parser.add_argument("--encoder_tile_size", type=int, default=512) |
|
parser.add_argument("--decoder_tile_size", type=int, default=64) |
|
parser.add_argument("--load_8bit_llava", action='store_true', default=False) |
|
args = parser.parse_args() |
|
print(args) |
|
use_llava = not args.no_llava |
|
|
|
|
|
model = create_SUPIR_model('options/SUPIR_v0.yaml', SUPIR_sign=args.SUPIR_sign) |
|
if args.loading_half_params: |
|
model = model.half() |
|
if args.use_tile_vae: |
|
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size) |
|
model.ae_dtype = convert_dtype(args.ae_dtype) |
|
model.model.dtype = convert_dtype(args.diff_dtype) |
|
model = model.to(SUPIR_device) |
|
|
|
if use_llava: |
|
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False) |
|
else: |
|
llava_agent = None |
|
|
|
os.makedirs(args.save_dir, exist_ok=True) |
|
for img_pth in os.listdir(args.img_dir): |
|
img_name = os.path.splitext(img_pth)[0] |
|
|
|
LQ_ips = Image.open(os.path.join(args.img_dir, img_pth)) |
|
LQ_img, h0, w0 = PIL2Tensor(LQ_ips, upsacle=args.upscale, min_size=args.min_size) |
|
LQ_img = LQ_img.unsqueeze(0).to(SUPIR_device)[:, :3, :, :] |
|
|
|
|
|
LQ_img_512, h1, w1 = PIL2Tensor(LQ_ips, upsacle=args.upscale, min_size=args.min_size, fix_resize=512) |
|
LQ_img_512 = LQ_img_512.unsqueeze(0).to(SUPIR_device)[:, :3, :, :] |
|
clean_imgs = model.batchify_denoise(LQ_img_512) |
|
clean_PIL_img = Tensor2PIL(clean_imgs[0], h1, w1) |
|
|
|
|
|
if use_llava: |
|
captions = llava_agent.gen_image_caption([clean_PIL_img]) |
|
else: |
|
captions = [''] |
|
print(captions) |
|
|
|
|
|
samples = model.batchify_sample(LQ_img, captions, num_steps=args.edm_steps, restoration_scale=args.s_stage1, s_churn=args.s_churn, |
|
s_noise=args.s_noise, cfg_scale=args.s_cfg, control_scale=args.s_stage2, seed=args.seed, |
|
num_samples=args.num_samples, p_p=args.a_prompt, n_p=args.n_prompt, color_fix_type=args.color_fix_type, |
|
use_linear_CFG=args.linear_CFG, use_linear_control_scale=args.linear_s_stage2, |
|
cfg_scale_start=args.spt_linear_CFG, control_scale_start=args.spt_linear_s_stage2) |
|
|
|
for _i, sample in enumerate(samples): |
|
Tensor2PIL(sample, h0, w0).save(f'{args.save_dir}/{img_name}_{_i}.png') |
|
|
|
|