|
import torch.nn as nn
|
|
|
|
from ...util import append_dims, instantiate_from_config
|
|
|
|
|
|
class Denoiser(nn.Module):
|
|
def __init__(self, weighting_config, scaling_config):
|
|
super().__init__()
|
|
|
|
self.weighting = instantiate_from_config(weighting_config)
|
|
self.scaling = instantiate_from_config(scaling_config)
|
|
|
|
def possibly_quantize_sigma(self, sigma):
|
|
return sigma
|
|
|
|
def possibly_quantize_c_noise(self, c_noise):
|
|
return c_noise
|
|
|
|
def w(self, sigma):
|
|
return self.weighting(sigma)
|
|
|
|
def __call__(self, network, input, sigma, cond):
|
|
sigma = self.possibly_quantize_sigma(sigma)
|
|
sigma_shape = sigma.shape
|
|
sigma = append_dims(sigma, input.ndim)
|
|
c_skip, c_out, c_in, c_noise = self.scaling(sigma)
|
|
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape))
|
|
return network(input * c_in, c_noise, cond) * c_out + input * c_skip
|
|
|
|
|
|
class DiscreteDenoiser(Denoiser):
|
|
def __init__(
|
|
self,
|
|
weighting_config,
|
|
scaling_config,
|
|
num_idx,
|
|
discretization_config,
|
|
do_append_zero=False,
|
|
quantize_c_noise=True,
|
|
flip=True,
|
|
):
|
|
super().__init__(weighting_config, scaling_config)
|
|
sigmas = instantiate_from_config(discretization_config)(
|
|
num_idx, do_append_zero=do_append_zero, flip=flip
|
|
)
|
|
self.register_buffer("sigmas", sigmas)
|
|
self.quantize_c_noise = quantize_c_noise
|
|
|
|
def sigma_to_idx(self, sigma):
|
|
dists = sigma - self.sigmas[:, None]
|
|
return dists.abs().argmin(dim=0).view(sigma.shape)
|
|
|
|
def idx_to_sigma(self, idx):
|
|
return self.sigmas[idx]
|
|
|
|
def possibly_quantize_sigma(self, sigma):
|
|
return self.idx_to_sigma(self.sigma_to_idx(sigma))
|
|
|
|
def possibly_quantize_c_noise(self, c_noise):
|
|
if self.quantize_c_noise:
|
|
return self.sigma_to_idx(c_noise)
|
|
else:
|
|
return c_noise
|
|
|
|
|
|
class DiscreteDenoiserWithControl(DiscreteDenoiser):
|
|
def __call__(self, network, input, sigma, cond, control_scale):
|
|
sigma = self.possibly_quantize_sigma(sigma)
|
|
sigma_shape = sigma.shape
|
|
sigma = append_dims(sigma, input.ndim)
|
|
c_skip, c_out, c_in, c_noise = self.scaling(sigma)
|
|
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape))
|
|
return network(input * c_in, c_noise, cond, control_scale) * c_out + input * c_skip
|
|
|