|
import torch
|
|
import torch.nn as nn
|
|
|
|
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
|
from CKPT_PTH import LLAVA_CLIP_PATH
|
|
|
|
|
|
class CLIPVisionTower(nn.Module):
|
|
def __init__(self, vision_tower, args, delay_load=False):
|
|
super().__init__()
|
|
|
|
self.is_loaded = False
|
|
|
|
self.vision_tower_name = vision_tower
|
|
print(f'Loading vision tower: {self.vision_tower_name}')
|
|
self.select_layer = args.mm_vision_select_layer
|
|
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
|
|
|
if not delay_load:
|
|
self.load_model()
|
|
else:
|
|
|
|
self.cfg_only = CLIPVisionConfig.from_pretrained(
|
|
self.vision_tower_name if LLAVA_CLIP_PATH is None else LLAVA_CLIP_PATH)
|
|
|
|
def load_model(self):
|
|
self.image_processor = CLIPImageProcessor.from_pretrained(
|
|
self.vision_tower_name if LLAVA_CLIP_PATH is None else LLAVA_CLIP_PATH)
|
|
self.vision_tower = CLIPVisionModel.from_pretrained(
|
|
self.vision_tower_name if LLAVA_CLIP_PATH is None else LLAVA_CLIP_PATH)
|
|
self.vision_tower.requires_grad_(False)
|
|
|
|
self.is_loaded = True
|
|
|
|
def feature_select(self, image_forward_outs):
|
|
image_features = image_forward_outs.hidden_states[self.select_layer]
|
|
if self.select_feature == 'patch':
|
|
image_features = image_features[:, 1:]
|
|
elif self.select_feature == 'cls_patch':
|
|
image_features = image_features
|
|
else:
|
|
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
|
return image_features
|
|
|
|
@torch.no_grad()
|
|
def forward(self, images):
|
|
if type(images) is list:
|
|
image_features = []
|
|
for image in images:
|
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
|
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
|
image_features.append(image_feature)
|
|
else:
|
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
|
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
|
|
|
return image_features
|
|
|
|
@property
|
|
def dummy_feature(self):
|
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.vision_tower.dtype
|
|
|
|
@property
|
|
def device(self):
|
|
return self.vision_tower.device
|
|
|
|
@property
|
|
def config(self):
|
|
if self.is_loaded:
|
|
return self.vision_tower.config
|
|
else:
|
|
return self.cfg_only
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.config.hidden_size
|
|
|
|
@property
|
|
def num_patches(self):
|
|
return (self.config.image_size // self.config.patch_size) ** 2
|
|
|