|
import torch
|
|
import torch.nn as nn
|
|
import re
|
|
|
|
|
|
class IdentityMap(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
@property
|
|
def config(self):
|
|
return {"mm_projector_type": 'identity'}
|
|
|
|
|
|
class SimpleResBlock(nn.Module):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.pre_norm = nn.LayerNorm(channels)
|
|
|
|
self.proj = nn.Sequential(
|
|
nn.Linear(channels, channels),
|
|
nn.GELU(),
|
|
nn.Linear(channels, channels)
|
|
)
|
|
def forward(self, x):
|
|
x = self.pre_norm(x)
|
|
return x + self.proj(x)
|
|
|
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs):
|
|
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
|
|
|
if projector_type == 'linear':
|
|
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
|
if mlp_gelu_match:
|
|
mlp_depth = int(mlp_gelu_match.group(1))
|
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
|
for _ in range(1, mlp_depth):
|
|
modules.append(nn.GELU())
|
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
|
return nn.Sequential(*modules)
|
|
|
|
if projector_type == 'identity':
|
|
return IdentityMap()
|
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}')
|
|
|