|
import torch
|
|
|
|
from ...util import default, instantiate_from_config
|
|
|
|
|
|
class EDMSampling:
|
|
def __init__(self, p_mean=-1.2, p_std=1.2):
|
|
self.p_mean = p_mean
|
|
self.p_std = p_std
|
|
|
|
def __call__(self, n_samples, rand=None):
|
|
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,)))
|
|
return log_sigma.exp()
|
|
|
|
|
|
class DiscreteSampling:
|
|
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, idx_range=None):
|
|
self.num_idx = num_idx
|
|
self.sigmas = instantiate_from_config(discretization_config)(
|
|
num_idx, do_append_zero=do_append_zero, flip=flip
|
|
)
|
|
self.idx_range = idx_range
|
|
|
|
def idx_to_sigma(self, idx):
|
|
|
|
return self.sigmas[idx]
|
|
|
|
def __call__(self, n_samples, rand=None):
|
|
if self.idx_range is None:
|
|
idx = default(
|
|
rand,
|
|
torch.randint(0, self.num_idx, (n_samples,)),
|
|
)
|
|
else:
|
|
idx = default(
|
|
rand,
|
|
torch.randint(self.idx_range[0], self.idx_range[1], (n_samples,)),
|
|
)
|
|
return self.idx_to_sigma(idx)
|
|
|
|
|