|
import torch
|
|
|
|
|
|
class EDMScaling:
|
|
def __init__(self, sigma_data=0.5):
|
|
self.sigma_data = sigma_data
|
|
|
|
def __call__(self, sigma):
|
|
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
|
|
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5
|
|
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5
|
|
c_noise = 0.25 * sigma.log()
|
|
return c_skip, c_out, c_in, c_noise
|
|
|
|
|
|
class EpsScaling:
|
|
def __call__(self, sigma):
|
|
c_skip = torch.ones_like(sigma, device=sigma.device)
|
|
c_out = -sigma
|
|
c_in = 1 / (sigma**2 + 1.0) ** 0.5
|
|
c_noise = sigma.clone()
|
|
return c_skip, c_out, c_in, c_noise
|
|
|
|
|
|
class VScaling:
|
|
def __call__(self, sigma):
|
|
c_skip = 1.0 / (sigma**2 + 1.0)
|
|
c_out = -sigma / (sigma**2 + 1.0) ** 0.5
|
|
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5
|
|
c_noise = sigma.clone()
|
|
return c_skip, c_out, c_in, c_noise
|
|
|