Fabrice-TIERCELIN commited on
Commit
0c09666
1 Parent(s): cca01e3

As SUPIR is not working yet, I will try to run another AI to be sure I can run an AI on ZERO space

Browse files
Files changed (1) hide show
  1. app.py +162 -0
app.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image
4
+ import cv2
5
+ from moviepy.editor import VideoFileClip
6
+ from share_btn import community_icon_html, loading_icon_html, share_js
7
+ import torch
8
+ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
9
+ from diffusers.utils import export_to_video
10
+
11
+
12
+
13
+ def convert_mp4_to_frames(video_path, duration=3):
14
+ # Read the video file
15
+ video = cv2.VideoCapture(video_path)
16
+
17
+ # Get the frames per second (fps) of the video
18
+ fps = video.get(cv2.CAP_PROP_FPS)
19
+
20
+ # Calculate the number of frames to extract
21
+ num_frames = int(fps * duration)
22
+
23
+ frames = []
24
+ frame_count = 0
25
+
26
+ # Iterate through each frame
27
+ while True:
28
+ # Read a frame
29
+ ret, frame = video.read()
30
+
31
+ # If the frame was not successfully read or we have reached the desired duration, break the loop
32
+ if not ret or frame_count == num_frames:
33
+ break
34
+
35
+ # Convert BGR to RGB
36
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
37
+
38
+ # Append the frame to the list of frames
39
+ frames.append(frame)
40
+
41
+ frame_count += 1
42
+
43
+ # Release the video object
44
+ video.release()
45
+
46
+ # Convert the list of frames to a numpy array
47
+ frames = np.array(frames)
48
+
49
+ return frames
50
+
51
+ def infer(prompt, video_in, denoise_strength):
52
+
53
+ negative_prompt = "text, watermark, copyright, blurry, nsfw"
54
+
55
+ video = convert_mp4_to_frames(video_in, duration=3)
56
+ video_resized = [Image.fromarray(frame).resize((1024, 576)) for frame in video]
57
+
58
+ pipe_xl = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float32, revision="refs/pr/17")
59
+ pipe_xl.vae.enable_slicing()
60
+ pipe_xl.scheduler = DPMSolverMultistepScheduler.from_config(pipe_xl.scheduler.config)
61
+ pipe_xl.enable_model_cpu_offload()
62
+ pipe_xl.to("cpu")
63
+ video_frames = pipe_xl(prompt, negative_prompt=negative_prompt, video=video_resized, strength=denoise_strength).frames
64
+ del pipe_xl
65
+ #torch.cuda.empty_cache()
66
+ video_path = export_to_video(video_frames, output_video_path="xl_result.mp4")
67
+
68
+ return "xl_result.mp4", gr.Group.update(visible=True)
69
+
70
+ css = """
71
+ #col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
72
+ a {text-decoration-line: underline; font-weight: 600;}
73
+ .animate-spin {
74
+ animation: spin 1s linear infinite;
75
+ }
76
+ @keyframes spin {
77
+ from {
78
+ transform: rotate(0deg);
79
+ }
80
+ to {
81
+ transform: rotate(360deg);
82
+ }
83
+ }
84
+ #share-btn-container {
85
+ display: flex;
86
+ padding-left: 0.5rem !important;
87
+ padding-right: 0.5rem !important;
88
+ background-color: #000000;
89
+ justify-content: center;
90
+ align-items: center;
91
+ border-radius: 9999px !important;
92
+ max-width: 13rem;
93
+ }
94
+ #share-btn-container:hover {
95
+ background-color: #060606;
96
+ }
97
+ #share-btn {
98
+ all: initial;
99
+ color: #ffffff;
100
+ font-weight: 600;
101
+ cursor:pointer;
102
+ font-family: 'IBM Plex Sans', sans-serif;
103
+ margin-left: 0.5rem !important;
104
+ padding-top: 0.5rem !important;
105
+ padding-bottom: 0.5rem !important;
106
+ right:0;
107
+ }
108
+ #share-btn * {
109
+ all: unset;
110
+ }
111
+ #share-btn-container div:nth-child(-n+2){
112
+ width: auto !important;
113
+ min-height: 0px !important;
114
+ }
115
+ #share-btn-container .wrap {
116
+ display: none !important;
117
+ }
118
+ #share-btn-container.hidden {
119
+ display: none!important;
120
+ }
121
+ img[src*='#center'] {
122
+ display: block;
123
+ margin: auto;
124
+ }
125
+ """
126
+
127
+ with gr.Blocks(css=css) as demo:
128
+ with gr.Column(elem_id="col-container"):
129
+ gr.Markdown(
130
+ """
131
+ <h1 style="text-align: center;">Zeroscope XL</h1>
132
+ <p style="text-align: center;">
133
+ This space is specifically designed for upscaling content made from <br />
134
+ <a href="https://huggingface.co/spaces/fffiloni/zeroscope">the zeroscope_v2_576w space</a> using vid2vid. <br />
135
+ Remember to use the same prompt that was used to generate the original clip.<br />
136
+ For demo purpose, video length is limited to 3 seconds.
137
+ </p>
138
+
139
+ [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/zeroscope-XL?duplicate=true)
140
+
141
+ """
142
+ )
143
+
144
+ video_in = gr.Video(type="numpy", source="upload")
145
+ prompt_in = gr.Textbox(label="Prompt", placeholder="This must be the same prompt you used for the original clip :)", elem_id="prompt-in")
146
+ denoise_strength = gr.Slider(label="Denoise strength", minimum=0.6, maximum=0.9, step=0.01, value=0.66)
147
+ #inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
148
+ submit_btn = gr.Button("Submit")
149
+ video_result = gr.Video(label="Video Output", elem_id="video-output")
150
+
151
+ with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
152
+ community_icon = gr.HTML(community_icon_html)
153
+ loading_icon = gr.HTML(loading_icon_html)
154
+ share_button = gr.Button("Share to community", elem_id="share-btn")
155
+
156
+ submit_btn.click(fn=infer,
157
+ inputs=[prompt_in, video_in, denoise_strength],
158
+ outputs=[video_result, share_group])
159
+
160
+ share_button.click(None, [], [], _js=share_js)
161
+
162
+ demo.queue(max_size=12).launch()